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Abstract. In ecological meta-analyses, nonindependence among observed effect sizes from
the same source paper is common. If not accounted for, nonindependence can seriously under-
mine inferences. We compared the performance of four meta-analysis methods that attempt to
address such nonindependence and the standard random-effect model that ignores noninde-
pendence. We simulated data with various types of within-paper nonindependence, and
assessed the standard deviation of the estimated mean effect size and Type I error rate of each
method. Although all four methods performed substantially better than the standard random-
effects model that assumes independence, there were differences in performance among the
methods. A two-step method that first summarizes the multiple observed effect sizes per paper
using a weighted mean and then analyzes the reduced data in a standard random-effects
model, and a robust variance estimation method performed consistently well. A hierarchical
model with both random paper and study effects gave precise estimates but had a higher Type
I error rates, possibly reflecting limitations of currently available meta-analysis software. Over-
all, we advocate the use of the two-step method with a weighted paper mean and the robust
variance estimation method as reliable ways to handle within-paper nonindependence in eco-
logical meta-analyses.

Key words: meta-analysis; nonindependence; pseudoreplication; random effect; hierarchical model;
robust variance estimation.

INTRODUCTION

Meta-analysis is a quantitative synthesis method that
combines individual studies to quantify the overall effect
and the heterogeneity in effects among studies. Since its
introduction to ecology (Jarvinen 1991, Arnqvist and
Wooster 1995), meta-analysis has played an increasingly
influential role in the field, such as testing ecological the-
ories, identifying research directions, and informing con-
servation and management strategies (Stewart 2009,
Cadotte et al. 2012, Gurevitch et al. 2018). Given its
wide application and large impact, rigorous methodol-
ogy is crucial (Osenberg et al. 1999, Lortie et al. 2015).
Although statistical methods and specialized software
for meta-analysis have advanced greatly over the past
few decades, many statistical issues still remain

(Gurevitch and Hedges 1999, Nakagawa and Santos
2012, Koricheva and Gurevitch 2014).
A prevalent statistical issue in meta-analysis is nonin-

dependence among observed effect sizes (Gurevitch and
Hedges 1999, Nakagawa et al. 2017, Noble et al. 2017).
A common type of nonindependence structure arises
when observed effect sizes come in identifiable groups,
where they are nonindependent within groups but inde-
pendent across groups. This type of nonindependence
has been called pseudoreplication and can seriously
undermine statistical inferences (Hurlbert 1984). Many
mechanisms, such as shared experimental subjects, com-
mon experimental time/sites, or similar methodology,
could lead to this type of nonindependence and result in
varying strengths of correlation among observed effect
sizes in the group (Noble et al. 2017). One of the most
common way such a group arises is when single-source
papers consist of multiple studies, that is, yield multiple
observed effect sizes. Studies from the same source paper
and the resulting observed effect sizes arising from them
can be thought of as comprising a group. Here, we define
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a study as the experimental/observational procedures
and the resulting set of data that lead to a single
observed effect size. In this paper, we address noninde-
pendence within source papers, although our results
likely apply to other types of group or hierarchical struc-
tures that may also generate nonindependence, for exam-
ple, studies from the same lab group or geographic
locations.
Within-paper nonindependence is ubiquitous in eco-

logical meta-analysis (Noble et al. 2017). For example, a
source paper used in a meta-analysis may include multi-
ple responses measured in the same experiment, such as
biomass, growth rate, and fecundity. Observed effect
sizes from this paper will be nonindependent because
they were observed in the same experiment or may have
been based on the same subjects. Observed effect sizes
from the same paper could also be nonindependent even
if they arose from separate experiments, because experi-
ments likely share common methods, contexts, or other
characteristics that influence the effect size, for example,
studies from the same paper might all be done at the
same geographic location or in the same time period.
Because results of ecological research often depend
strongly on the ecological and methodological context,
we can expect nonindependence among observed effect
sizes from the same paper to be common. Although non-
independence does not lead to bias in parameter estima-
tion in general, ignoring nonindependence usually leads
to incorrect estimates of uncertainty, which in turn can
invalidate hypothesis tests (Kwok et al. 2007). The extent
of the inferential problems resulting from ignoring non-
independence of observed effect sizes within papers will
depend on the nature of the nonindependence and how
studies are distributed among paper.
Although it is ideal to incorporate the nonindepen-

dence structure in the meta-analysis model explicitly,
information necessary to model the exact nonindepen-
dence structure is often unavailable from source papers.
Thus, analysts typically use omnibus strategies for
addressing within-paper nonindependence. The first
strategy is a two-step method. Analysts first derive a sin-
gle summary effect size for each paper based on the mul-
tiple observed effect sizes in that paper and then analyze
the summary effect sizes using standard meta-analysis
methods that assume independence (Rosenthal and
Rubin 1986, Marı́n-Martı́nez and Sánchez-Meca 1999).
The summary effect size might be obtained by randomly
choosing one of the observed effect sizes from each
paper, or it could be derived as the mean of the observed
effect sizes in a paper. The second strategy is to include a
random paper effect in addition to the random study
effect in the meta-analysis model, assuming such a hier-
archical model can approximately model the actual pat-
tern of nonindependence. More recently, a third strategy,
known as the robust variance estimation, was developed
(Hedges et al. 2010, Tipton 2015). This method extends
the work on robust variance estimators (Huber 1967,
White et al. 1980) to meta-analysis and does not require

knowledge of the nonindependence structure among
observed effect sizes within groups.
These methods make different assumptions about how

observed effect sizes from the same source paper are cor-
related. For example, including a random paper and study
effect (both commonly assumed to be independent and
identically distributed random variables following normal
distributions) is equivalent to assuming that the observed
effect sizes within the same paper are positively corre-
lated, with an equal correlation coefficient for each pair.
However, one might expect the correlation to vary among
pairs of studies. This could arise, for example, if some
studies within a source paper were conducted closer in
space and/or time and thus have more similar ecological
settings (Noble et al. 2017). Although methods exist to
model spatial and temporal correlations explicitly, these
methods require knowledge of the timing and spatial
locations, which is often not reported. In these situations,
a method that allows variable and unknown correlation
among pairs of observed effect sizes, such as the robust
variance estimation method, may perform better. To
determine the best methods among those that are avail-
able, it is critical to evaluate these methods under different
scenarios of within-paper nonindependence.
Despite the ubiquity of nonindependence within

papers, the performance of various methods attempting
to address this issue has not been comprehensively eval-
uated in the context of ecological meta-analysis. In this
study, we performed simulation experiments to examine
the effectiveness of different methods used to address
nonindependence with the intent of providing practical
guidance on choosing appropriate methods for ecologi-
cal meta-analysis. Specifically, we simulated data sets
that had a hierarchical structure, with multiple studies
within each source paper used in the meta-analysis. The
simulated data ranged from no correlation to strong but
unequal correlation among observed effect sizes within
the same source paper, and allowed for plausible varia-
tion in the number of observed effect sizes per source
paper. We applied five analytic methods to each simu-
lated data set and assessed their performance: four meth-
ods that have been proposed to handle nonindependence
within papers as well as the all-too-common method of
simply ignoring the issue.

METHODS

We simulated meta-analyses consisting of data from
20 papers, each containing a number of studies (Fig. 1).
For each study, we simulated replicated control and
treatment groups, with data from each source paper sim-
ulated to obtain various patterns of nonindependence
among observed effect sizes within the paper. For each
study, we calculated a log response ratio and its esti-
mated variance. The log response ratio is the most com-
monly used effect size metric in ecology (Nakagawa and
Santos 2012), but our qualitative results should apply to
other metrics as well. We estimated the overall mean
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effect size using alternative meta-analysis methods that
differ in how they account for nonindependence and
compared their performance. We conducted two sets of
simulation experiments (Fig. 1). In the first experiment,
observed effect sizes from the same source paper were
correlated with the same correlation coefficient for all
pairs. In the second experiment, we varied the correla-
tion between pairs of observed effect sizes.

Simulation of data for an individual study

We simulated a response variable y in the control and
treatment group for each study as

ycijk ¼ μεcijk, (1)

ytijk ¼ αijμεtijk, (2)

where ycijk and ytijk are the response variables for the kth

replicates in the control and treatment group of study j
in paper i, εcijk and εtijk are random errors following log-
normal distributions, and αij is the multiplicative treat-
ment effect, which can be decomposed as

αij ¼ αeij : (3)

Here, eij represents the study-specific random deviation
from the mean treatment effect and is assumed to follow
a log-normal distribution. Once data for each study were
simulated, we calculated a log response ratio for each
study (θij) as logð�ytij=�ycijÞ, and its variance as
varðytijÞ=ntij�ytij2þvarðycijÞ=ncij�ycij2, where ncij and ntij are
the number of replicates in the control and treatment
groups for study j within source paper i (Hedges et al.
1999).

Step 2
Calculate observed effect size 

and its variance

Step 1
Simulate replicated 

control and treatment 
data for each study in 

each paper

Step 3
Fit meta-analysis models

using observed effect sizes 
and variance

Paper 1

Paper 2

Paper 1

Study 1

Study 2

Paper 2

Study 1

Study 2

Study 3

Study 4

Paper 20

Study 1

Observed effect size 1

Observed effect size 2

Observed effect size 1

Observed effect size 2

Observed effect size 3

Observed effect size 4

Paper 20

Observed effect size 1

Meta-analysis
methods

1. Random effect meta-
analysis model
2. Two-step method with 
paper mean
3. Two-step method with 
one randomly chosen 
study
4. Including random 
paper effect
5. Robust variance 
estimation

Step 4
Evaluate model 

performance

Model performance 
metrics

Standard deviation
Error rate

Experiment 1: equally correlated study

Mean number of 
studies/paper ( )

1.5
5.5

15.5

Correlation ( )

0
0.1
0.5
0.9

Among-study
variability ( )

0.1
0.5
1

Experiment 2: unequally correlated study

Mean number of
studies/paper ( )

1.5
5.5

15.5

Correlation ( )

0.1–0.4
0.6–0.9

Among-study
variability (nini )

0.1
0.5
1

0.1–1

5000 iterations

FIG. 1. Diagram of the experimental design. In Experiment 1, observed effect sizes from the same source paper were correlated
with the same correlation coefficient for all pairs. In Experiment 2, the magnitude of correlation varied for pairs of observed effect
sizes. We systematically varied mean number of studies per paper (ni), correlation among observed effect sizes within the same paper
(ρ), and among-study variability (τ). For each combination of the experimental factor levels, Steps 1–3 were repeated 5,000 times.
The estimated mean effect sizes for each of the five methods over the 5,000 iterations were used to quantify the standard deviation
of the estimates and the Type I error rate in Step 4.
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Patterns of nonindependence in the simulations

Based on this simulation approach, the log response
ratio for each study, θij , follows a normal distribution
asymptotically with mean logðαÞþ logðeijÞ (Hedges et al.
1999). Thus, we can express θij simulated by Eqs. 1–3 as

θij ¼ logðαÞþ logðeijÞþ ϵij : (4)

Eq. 4 matches a random-effects meta-analysis model.
Here, logðαÞ is the mean effect size, logðeijÞ is the ran-
dom study effect, and ϵij is the within-study error. Both
logðeijÞ and ϵij are normally distributed.
Nonindependence among θij within papers may occur

through correlations among logðeijÞ and/or ϵij. Typically,
correlation among ϵij arises from using a shared control
or measuring the same group of subjects in studies with
multiple endpoints. The resulting correlation structure in
ϵij can be explicitly calculated and incorporated in the
meta-analysis model (Gleser and Olkin 2009, Lajeunesse
2011). Therefore, we assumed independence among ϵij
and only considered nonindependence arising from cor-
relation among the random study effects; that is,
covðθij ,θikÞ¼ covðlogðeijÞ, logðeikÞÞ for study j and k in
paper i.
We conducted simulation experiments with two pat-

terns of nonindependence. In the first experiment, the
random study effects from the same source paper were
equally correlated (i.e.,covðθij ,θikÞ¼ ρτ2, where ρ is the
correlation coefficient between each pair of observed
effect sizes and τ2 is the variance of logðeijÞ). We
included a special case of zero correlation (indepen-
dence) in the first experiment. In the second experiment,
the random study effects within a source paper were cor-
related but the correlation was not equal
(covðsij ,sikÞ¼ ρijkτ2i ). Here, the correlation coefficient,
ρijk, was allowed to vary among pairs of observed effect
sizes. We subscripted the among-study variance τ2
because we sometimes allow this quantity to vary among
papers in the second experiment. In both experiments,
we only considered nonnegative correlations, given that
similar contexts and shared data for studies from the
same source paper would be expected to lead to similar,
rather than dissimilar, observed effect sizes within a
paper.
Patterns of nonindependence in θij were simulated by

drawing logðeijÞ for each source paper from multivariate
normal distributions with appropriate covariance matri-
ces. The covariance matrix was generated as KRK, where
K is a matrix with τ as the diagonal elements and R is
the correlation matrix. In the first experiment, R was a
matrix with 1 at the diagonal positions and the same
correlation coefficient ρ at all other positions. In the sec-
ond experiment, R was a symmetric matrix with 1 at the
diagonal positions and different correlation coefficients
at all others to reflect the fact that studies were
unequally correlated. We used the C-vine method

proposed in Lewandowski et al. (2009) to generate such
correlation matrices.

Details of experimental design

In the simulation experiments, we did not systemati-
cally vary the parameters that were not expected to
influence how well methods address nonindependence.
Specifically, we set μ at 10 and α at 1. We simulated
logðεtijkÞ from a normal distribution with mean 0 and
standard deviation randomly chosen between 0.1 and
0.3 for each study. The number of replicates for each
study, equal for both the control and treatment groups,
was chosen with equal probability from integers between
3 and 20. Finally, we set the number of papers at 20, a
relatively low number in ecological meta-analysis. Meth-
ods that perform well in this situation are expected to
perform at least as well if the meta-analysis contains
more papers.
We systematically varied the parameters that we

expected to influence the efficacy of methods used to
address nonindependence, including the number of stud-
ies per paper, the magnitude of correlation among
observed effect sizes from the same source paper, and
the among-study variability. Below, we provide the levels
of these parameters and the rationales for these choices.

Number of studies per paper.—We examined the fre-
quency distribution of the number of studies per paper
(ni) in 15 published ecological meta-analyses chosen
haphazardly (Appendix S1: Section S1). A shifted nega-
tive binomial distribution adequately described the fre-
quency distribution of ni (Appendix S1: Fig. S1); that is,
ni�1 followed a negative binomial distribution. We also
found that the mean and standard deviation of ni�1
were correlated on the logarithmic scale (Appendix S1:
Fig. S2). Therefore, we chose three levels for the mean of
ni�1 spanning the observed range (0.5, 4.5, and 14.5)
and calculated the corresponding standard deviation
(1.1, 7.0, and 18.7) based on the linear regression. We
then drew ni�1 for each paper from a negative binomial
distribution with the mean and standard deviation speci-
fied above.

Correlation coefficient.—In the first experiment, in
which the correlation coefficient (ρ) was the same for all
pairs of study within a paper, we set ρ at 0, 0.1, 0.5, and
0.9, ranging from independence to quite strong correla-
tion. In the second experiment where ρ varied among
pairs of studies within the same paper, we set the range
of ρ for each paper. Because the C-Vine method (Lewan-
dowski et al. 2009) generates a correlation matrix from
user-specified partial correlation coefficients, we ran-
domly chose partial correlation coefficients from two
uniform ranges: 0.1–0.4 and 0.6–0.9. The resulting
ranges for pairwise correlations generally matched these
specified ranges for the partial correlations.
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Among-study variance.—In the first experiment, where
correlation between pairs of observed effect sizes is
equal, we set levels of the standard deviation for
among-study variability, τ, at 0.1, 0.5, and 1. The cho-
sen levels represent plausible ranges in ecological meta-
analyses. For example, a τ of 1 led to the treatment
effect for a particular study, αij , ranging between 14%
and 710% of the mean treatment effect for 95% of the
studies. A τ of 0.1 led to a range of 82–122%. In addi-
tion, our choice of among-study variance and among-
replicate variance within a study are also consistent
with the typical proportion of within- and among-study
heterogeneity in ecological meta-analyses (Senior et al.
2016).
In the second experiment, where correlation between

pairs of observed effect sizes is unequal, we used the
same three levels of τ and added a new scenario in
which τ varied among papers. This scenario is plausi-
ble in ecological meta-analyses. For example, some
papers included in the meta-analysis may contain stud-
ies from more diverse environments than others (Hille-
brand and Gurevitch 2014). For this scenario, we
chose τ for each paper from a uniform distribution
between 0.1 and 1.

Methods of meta-analysis for nonindependent data

We evaluated five methods commonly used in ecologi-
cal meta-analysis. The five methods are (1) the standard
random-effects meta-analysis model that ignores nonin-
dependence; (2) a two-step method in which we analyze
the weighted mean effect size for each paper in a ran-
dom-effects meta-analysis model (this is equivalent to
performing a fixed-effect meta-analysis for each paper
and using the resulting means and their standard errors
from the fixed-effect model in the second step); (3) a
two-step method in which we analyze one randomly cho-
sen observed effect size from each paper in a random-
effects meta-analysis model; (4) a hierarchical model
that included a random paper effect and a random study
effect; and (5) a robust variance estimation method for
meta-analysis (Hedges et al. 2010).
All random-effects meta-analysis models were imple-

mented using the function “rma” in R (version 3.6.2)
package “metafor” (version 2.1; Viechtbauer 2010) with
the variance of the random effects estimated by
restricted maximum likelihood (Veroniki et al. 2016). We
constructed confidence intervals based on the adjust-
ment proposed by Hartung and Knapp (2001) and Sidik
and Jonkman (2002). We implemented the method with
a random paper effect using function “rma.mv” in meta-
for, and constructed confidence intervals based on the
t-distribution of the Wald statistic. Finally, we imple-
mented the robust variance estimation method using
function “robu” in R package “robumeta” with the
default weights and adjustment for small sample size
(Fisher et al. 2017). Code for the simulation experiments
is provided in Data S1.

Metrics for model performance

We evaluated the performance of methods by the preci-
sion of the estimated mean effect size and the Type I error
rate. We calculated the standard deviation of the esti-
mated mean effect size over the 5,000 iterations of simula-
tions as the measure of precision. We calculated Type I
error rate as the percentage of times in the simulations
when the 95% confidence interval for the mean effect size
did not cover the true value. The confidence interval for
the estimated error rate was calculated based on the bino-
mial distributions for the number of falsely significant
results in the simulations. None of the methods produced
appreciable bias in the estimated mean effect sizes, and
we therefore do not present results about bias.

RESULTS

Precision of estimated mean effect size

For clarity of presentation, the figures contain a repre-
sentative subset of results. Full results can be found in
Appendix S1: Figs. S3 and S4. The standard random-ef-
fects meta-analysis model that assumes independence
among observed effect sizes had a low standard deviation
when the observed effect sizes were actually independent
(Fig. 2), but resulted in a higher standard deviation when
observed effect sizes were nonindependent (Fig. 2). The
loss of precision was more pronounced when the correla-
tion was strong (Fig. 2). Among the four methods that
account for nonindependence, the two-step method using
one randomly chosen study from each paper had a con-
sistently high standard deviation. This problem of low
precision, however, was less severe when correlations
among observed effect sizes were strong (Fig. 2). The
methods that included a random paper effect performed
consistently well in terms of precision under all scenarios
considered in the simulations. Finally, the two-step
method using a weighted paper mean and the robust vari-
ance estimation method gave low standard deviations
except when observed effect sizes from the same source
paper were independent.

Type I error rates

The standard random-effects model that ignored non-
independence substantially inflated the Type I error rates
(Fig. 3), sometimes to over 70%, unless observed effect
sizes were independent or only mildly nonindependent
(i.e., low correlation and very few observed effect sizes
per paper; Fig. 3). Under all scenarios of nonindepen-
dence, all four methods that accounted for nonindepen-
dence offered substantial improvement in error rates.
Surprisingly, including a random paper effect led to
error rates consistently above the correct level of 5% (be-
tween 5% and 8%) in the presence of nonindependence
(Fig. 3). The two-step method that used one study from
each paper gave correct error rates consistently. The two-
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FIG. 2. Standard deviations of the estimated mean effect size based on the five meta-analysis methods. The mean and standard
deviation of the distribution for the number of studies per paper, the among-study standard deviation (τ), and the correlation coeffi-
cient among observed effect sizes from the same paper (ρ) are noted on each panel. Methods 1–5 are (1) random-effect meta-analysis
model, (2) two-step method using a weighted mean from each paper, (3) two-step method with one randomly chosen observed effect
sizes from each paper, (4) meta-analysis with random paper and study effects, and (5) robust variance estimation method. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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FIG. 3. Type I error rates are based on the five meta-analysis methods. Error bars are 95% confidence intervals. Error rates
exceeding 10% are indicated with the actual error rates. The mean and standard deviation of the distribution for the number of stud-
ies per paper, the among-study standard deviation (τ), and the correlation coefficient among observed effect sizes within the same
paper (ρ) are noted on each panel. Methods 1–5 are (1) random-effect meta-analysis model, (2) two-step method using a weighted
mean from each paper, (3) two-step method with one randomly chosen observed effect sizes from each paper, (4) meta-analysis with
random paper and study effects, and (5) robust variance estimation method. [Color figure can be viewed at wileyonlinelibrary.com]
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step method using a weighted paper mean and the robust
variance estimation method both gave correct error rates
when observed effect sizes were nonindependent. How-
ever, these two methods sometimes generated error rates
significantly lower than the correct level of 5% when
observed effect sizes were independent (Fig. 3).

DISCUSSION

Nonindependence among observed effect sizes from
the same source paper is common in ecological meta-
analyses and can arise through a variety of mechanisms,
such as shared experimental subjects, common experi-
mental sites, or similar methodology (Noble et al. 2017).
The variety of mechanisms leading to within-paper non-
independence gives rise to different patterns and strength
of correlations among observed effect sizes from the same
source paper. Our simulations, using ecologically realistic
parameter values, represent a broad range of scenarios.
We found that treating nonindependent data as if they
were independent caused error rates that were substan-
tially higher than the correct level (5% for a 95% confi-
dence interval), unless the observed effect sizes were only
mildly nonindependent (i.e., low mean ni and ρ; Fig. 3).
Even for the lowest nonzero level of nonindependence,
the error rate was still nonnegligibly above the correct
level of 5%. All four methods that accounted for nonin-
dependence offered considerable improvements with
regard to error rates. In addition, ignoring nonindepen-
dence led to imprecise estimates of the mean effect size
when the correlation among studies was strong. Because
meta-analyses in ecology are still often done using meth-
ods that ignore nonindependence (Gurevitch and Hedges
1999, Nakagawa and Santos 2012, Noble et al. 2017), our
study demonstrates an urgent need for meta-analysts to
adopt methods that account for this.
The two-step method with one randomly chosen study

from each paper consistently produced less precise esti-
mates compared to other methods that accounted for
nonindependence (Fig. 2), presumably because valuable
information was discarded using this method. The
decrease in precision was sometimes substantial. For
example, when observed effect sizes from the same
source paper were equally correlated with ρ¼ 0:1, τ¼ 1,
and EðniÞ¼ 15:5, the standard deviation of the estimated
mean effect size based on this method was 0.225 com-
pared to 0.104 based on the method with a random
paper effect. The response ratio would be between 0.64
and 1.55 95% of the time using this method compared to
0.82–1.23 using the method with a random paper effect.
Although error rates based on this method were consis-
tently correct (Fig. 3), other methods offered compara-
ble performance in error rate but substantially better
performance in precision. As a result, we do not recom-
mend this method as a general way to handle noninde-
pendence within papers.
Including a random paper effect consistently inflated

the type I error rates. Surprisingly, this method inflated

error rates even when it was the correct model (i.e., when
observed effect sizes from the same source paper had
equal correlation). We speculate that the consistently
higher than correct error rates arose from the limitation
of the methods for statistical inference in hierarchical
models currently implemented in metafor. Confidence
intervals for parameter estimates were constructed based
on a t distribution for the Wald statistic, which is known
to cause high error rates, primarily because uncertainty
in the standard error estimates is not fully accounted for
(Pinheiro and Bates 2000). Although we do not recom-
mend this specific method because of the higher error
rates, the issue causing this problem could likely be
resolved. In the general mixed-effect model literature,
this issue is addressed by adjusting the degrees of free-
dom for a t or F test (Kenward and Roger 1997). Imple-
mentation of these inferential methods in hierarchical
meta-analysis models could be valuable, considering the
high precision (Fig. 2) and the unique advantage of par-
titioning sources of variation using hierarchical models.
To date, no meta-analysis software has these methods
implemented. Improvements to metafor could be extre-
mely useful, since it has become the most versatile and
widely used software for meta-analysis using the fre-
quentist approach.
Both the two-step method with a weighted mean for

each paper and the robust variance estimation method
controlled error rates well and had similar standard devi-
ations over the range of conditions we explored. There
was, however, some cost in terms of low statistical power,
as evidenced by error rates significantly lower than 5%,
when these methods were applied to data that were actu-
ally independent, but that cost disappeared in the pres-
ence of nonindependence. There are potential
shortcomings with these two methods (Appendix S1:
Section S2). For example, the robust variance estimation
method requires user-specified weights (Hedges et al.
2010). Because weights proportional to the inverse
covariance matrix give the most efficient estimates but
the user does not know the covariance matrix, this
method may be far from optimal and result in less effi-
cient estimates. Additionally, the robust variance estima-
tion method is asymptotic and thus requires a sufficient
number of papers to be effective. The two-step method
using the mean for each paper also has potential limita-
tions. For example, the variance of the true mean for
each paper will generally vary among papers, with means
from papers with many studies having lower variance.
This heterogeneity is not accounted for. These issues,
however, do not appear to influence the performance of
these two methods substantially. Taken together, we sug-
gest either using the robust variance estimation method
or the two-step method starting with a weighted mean
for each paper to handle nonindependence within papers,
at least when conditions (i.e., number of papers, number
of studies per paper, levels of variation, and degrees of
nonindependence) are expected to be similar to the con-
ditions we explored in the simulations.
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Figure S1: Frequency distribution of number of studies per paper (ni) from published

meta-analyses. Green lines are the shifted negative binomial distributions fitted to each

empirical histogram.
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Figure S2: The relationship between the mean−1 and standard deviation of number of

studies per paper in ecological meta-analyses. Axes are on logarithmic scale. The solid line

is the regression line.
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Figure S3: Standard deviations of the estimated mean effect size based on the five meta-

analysis methods. The mean and standard deviation of the distribution for the number of

studies per paper, the among-study standard deviation (τ), and the correlation coefficient

among observed effect sizes from the same paper (ρ) are noted on each panel. Methods

1–5 are 1) random-effect meta-analysis model, 2) two-step method using a weighted mean

from each paper, 3) two-step method with one randomly chosen observed effect sizes from

each paper, 4) meta-analysis with random paper and study effects, and 5) robust variance

estimation method.
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Figure S4: Type I error rates based on the five meta-analysis methods. Error bars are 95%

confidence intervals. Error rates exceeding 10% were noted with the actual error rates. The

mean and standard deviation of the distribution for the number of studies per paper, the

among-study standard deviation (τ), and the correlation coefficient among observed effect

sizes within the same paper (ρ) are noted on each panel. Methods 1–5 are 1) random-effect

meta-analysis model, 2) two-step method using a weighted mean from each paper, 3) two-step

method with one randomly chosen observed effect sizes from each paper, 4) meta-analysis

with random paper and study effects, and 5) robust variance estimation method..
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Section S2

Potential shortcomings of the methods

Robust variance estimation method

The key advantage of the robust variance estimation method is that it makes no assumptions

about the structure of non-independence within a group when making inferences. In fact,

we found that this method performed consistently well in both standard deviation and error

rate in all scenarios of non-independence included in the simulations. However, the robust-

ness does not come without potential compromises. First, the robustness of this method is

achieved by using the empirical residuals to approximate the unknown correlation structure

among studies within the same paper. This is the same technique used in the sandwich esti-

mator of variance (Huber, 1967; White et al., 1980) and the generalized estimating equation

(Liang and Zeger, 1986). It is well known that such techniques may result in much less effi-

cient estimates compared to methods that correctly model the non-independence structure

(McCullagh, 1992; Kauermann and Carroll, 2001). In fact, we observed higher standard

deviations using this method compared to the standard random effects model when ob-

served effect sizes were independent and the model with a random paper effect when effect

sizes were equally correlated within a paper. However, the loss of efficiency does not ap-

pears to be substantial in most cases, especially in the case of equally correlated studies.

Therefore, we believe this should not be a serious concern in practice. Second, the robust

variance estimation method requires a sufficient number of papers to be effective as it relies

on asymptotic theory for statistical inference. This method performed well in our simulation

with 20 papers, a relatively low number of papers for ecological meta-analysis. Although

many meta-analyses contain data from more than 20 papers, it is not uncommon in these

cases to analyze subsets of data that use observed effect sizes from fewer papers. For a meta-

analysis with many fewer papers, the analyst should be aware of potential loss of efficiency

using the robust variance estimation methods.

The robust variance estimation method requires user-specified weights. Theoretically,

the optimal weights that achieve the most precise estimates are proportional to the inverse

covariance matrix for the observed effect sizes within the same paper. However, because the

7



structure of the covariance matrix is unknown, this method requires the analyst to provide

a best guess of covariance structure to derive weights. As a result, one might expect inef-

ficient estimates if the provided weights are far from the optimal ones. In our simulation

experiments, we used the default option of weights in the R package robumeta (Fisher et al.,

2017). The default option uses weights that correspond to assuming an equal correlation of

0.8 between each pair of studies within a paper. Although our simulations included scenar-

ios of unequal correlation among studies and equal correlation with correlation coefficients

substantially different from 0.8, we did not observe substantial loss of precision in these

scenarios. These findings suggest that the performance of this method is not sensitive to

the choice of weights. Parameter estimation and statistical inference are robust, even if the

provided weights are substantially different from the optimal ones.

The two-step procedure based on weighted mean of each paper

The two-step procedure that uses the weighted mean of each paper gave error rates very close

to the target level of 5% when studies were non-independent. In addition, this procedure

typically led to a standard deviation close to the lowest among the methods we explored.

The major concern with the use of this method is its performance when observed effect

sizes were actually independent. In this situation, its standard deviation was higher than

the method of including a random paper effect or the robust variance estimation method.

This method also had low statistical power in this situation, as evidenced by lower than

correct error rates. However, the relatively poor performance disappeared when observed

effect sizes were non-independent, even at the lowest level of correlation. Thus, the issue of

low statistical power is unlikely to be a serious concern in practice.

We speculate that the inconsistency between the assumptions of this method and the

distributional property of data might be the cause for the relatively poor performance of

this method in the cases of independent studies. When using this two-step method, we first

calculated the weighted mean of observed effect sizes from each paper and then analyzed

the paper mean in a standard random effect meta-analysis model. The variation in the

mean observed effect sizes of each paper comes from two sources, the within-study error

and true among-study variation. Variation arising from the within-study error is explicitly

calculated in the first step and accounted for in the second step as the weights. Variation
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in the paper means arising from the true among-study variation is assumed to have equal

variance for all papers in the second step. This variance, however, is expected to vary from

paper to paper. For example, the mean effect size of a paper is expected to be less variable

if the paper contains a large number of studies. The variance of the paper mean can also

differ because studies in certain papers may be more or less variable than in other studies.

Essentially, the standard random effects model used in the second step did not fully account

for the heterogeneity in the variance of the paper means. Simulation studies in linear models

have shown that misspecification of heteroskedasticity could result in bias and inconsistency

in standard error estimates and consequently invalidate statistical inference; however, the

extent of the problem depends both on the form and severity of the misspecification (Long

and Ervin, 2000). Our findings show that such misspecification as in the two-step procedure

may led to lower statistical power when observed effect sizes are truly independent, but does

not appear to influence statistical inference over realistic range of parameters in ecological

meta-analysis when observed effect sizes taken from the same paper are non-independent.
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