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Abstract
1. Despite the wide application of meta-analysis in ecology, some of the traditional 

methods used for meta-analysis may not perform well given the type of data char-
acteristic of ecological meta-analyses.

2. We reviewed published meta-analyses on the ecological impacts of global climate 
change, evaluating the number of replicates used in the primary studies (ni) and 
the number of studies or records (k) that were aggregated to calculate a mean ef-
fect size. We used the results of the review in a simulation experiment to assess 
the performance of conventional frequentist and Bayesian meta-analysis methods 
for estimating a mean effect size and its uncertainty interval.

3. Our literature review showed that ni and k were highly variable, distributions were 
right-skewed and were generally small (median ni = 5, median k = 44). Our simu-
lations show that the choice of method for calculating uncertainty intervals was 
critical for obtaining appropriate coverage (close to the nominal value of 0.95). 
When k was low (<40), 95% coverage was achieved by a confidence interval (CI) 
based on the t distribution that uses an adjusted standard error (the Hartung–
Knapp–Sidik–Jonkman, HKSJ), or by a Bayesian credible interval, whereas boot-
strap or z distribution CIs had lower coverage. Despite the importance of the 
method to calculate the uncertainty interval, 39% of the meta-analyses reviewed 
did not report the method used, and of the 61% that did, 94% used a potentially 
problematic method, which may be a consequence of software defaults.

4. In general, for a simple random-effects meta-analysis, the performance of the 
best frequentist and Bayesian methods was similar for the same combinations of 
factors (k and mean replication), though the Bayesian approach had higher than 
nominal (>95%) coverage for the mean effect when k was very low (k < 15). Our 
literature review suggests that many meta-analyses that used z distribution or 
bootstrapping CIs may have overestimated the statistical significance of their re-
sults when the number of studies was low; more appropriate methods need to be 
adopted in ecological meta-analyses.
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1  | INTRODUC TION

Meta-analysis uses statistical techniques to quantitatively summarize in-
formation from different studies and is highly influential in the contem-
porary practice of science. To conduct a meta-analysis, an investigator 
gathers summary statistics from each study to calculate an effect size, 
with the goal of computing an overall effect size (and its uncertainty) and 
exploring the factors contributing to variation in effect sizes (Nakagawa, 
Noble, Senior, & Lagisz, 2017). The use of meta-analysis in ecology has 
been growing rapidly since the 1990s, and has proven particularly useful 
in discerning general patterns by comparing information from different 
species, study sites and systems (Cadotte, Mehrkens, & Menge, 2012). 
Advice on best methodological practices for meta-analysis is widespread 
in disciplines with a longer history of meta-analytic research (e.g. medi-
cal sciences) but is lagging behind in ecology (Gates, 2002). This can be 
problematic because ecological meta-analyses have specific challenges 
not necessarily typically in other disciplines.

One pervasive characteristic of ecological meta-analyses is the 
high heterogeneity (i.e. large among-study variation in effect sizes). 
Senior et al. (2016) analysed 86 meta-analyses in ecology and evolu-
tion and found that the among-study variation averaged 92% of the 
total variance. In contrast, a review of 509 meta-analyses in medicine 
found that there was no detectable among-study variation in 50% of 
the studies (Higgins, Thompson, & Spiegelhalter, 2009). Ecological 
studies also differ from many other disciplines in the typical level of 
within-study replication, which is fewer than 10 replicates per study 
(Hillebrand & Gurevitch, 2014). Such low levels of replication will in-
fluence the precision of the estimates of effect size from the primary 
studies (Langan, Higgins, & Simmonds, 2016). Importantly, the low 
level of replication typical of ecological studies is outside the range 
used in most simulation studies designed to assess meta-analytic 
methods, which typically range from dozens to hundreds (Langan 
et al., 2016). Thus differences between ecology and other disciplines 
potentially limit the insights ecologists can gain from existing simula-
tions that compare different meta-analytic methods.

Specific advice for conducting ecological meta-analyses in-
cludes suggestions on the type of meta-analytic model and effect 
size calculation to use (Gurevitch & Hedges, 1999; Lajeunesse, 2015; 
Osenberg, Sarnelle, Cooper, & Holt, 1999), and how to deal with 
non-independence (Gurevitch & Hedges, 1999; Noble, Lagisz, O'dea, 
& Nakagawa, 2017). For example, a random-effects model is often 
recommended for ecological meta-analysis over a fixed-effects model 
(Gurevitch & Hedges, 1999), and multi-level models are increasingly 
being used to incorporate the non-independence commonly found 
in ecological meta-analyses (Nakagawa & Santos, 2012). A topic ad-
dressed in the medical literature that has received little attention in 
ecology (but see Adams, Gurevitch, & Rosenberg, 1997) is the choice 
of confidence interval (CI) used to estimate the mean effect size in 
a meta-analysis (Hartung & Knapp, 2001; Sánchez-Meca & Marín-
Martínez, 2008; Sidik & Jonkman, 2003).

Simulation studies have shown that when the number of studies (k) 
in the meta-analysis is low, the CIs for a mean effect size calculated using 
a normal approximation are too narrow, leading to coverage below the 

nominal level (i.e. a 95% CI should include the true value 95% of the time; 
Brockwell & Gordon, 2001; Sánchez-Meca & Marín-Martínez, 2008). 
To avoid this problem, meta-analyses in the medical literature often use 
the HKSJ (Hartung–Knapp–Sidik–Jonkman; Hartung & Knapp, 2001; 
Sidik & Jonkman, 2003) method, which is based on a t distribution and 
can achieve good coverage even when k is small (Inthout, Ioannidis, & 
Borm, 2014). On the one hand, bootstrap techniques have been rec-
ommended for estimating CIs for means in ecological meta-analyses, 
due to its robustness to departures from normality (Adams et al., 1997). 
On the other hand, bootstrapped CIs can lead to poor coverage when 
estimating the among-study variance (Viechtbauer, 2007).

Bayesian methods, and the credible interval, offer an alterna-
tive approach to estimating uncertainty in meta-analyses. Although 
Bayesian methods may have a steep learning curve, they offer advan-
tages in handling hierarchical models for incorporating prior informa-
tion and for dealing with missing data (Ogle, Barber, & Sartor, 2013). 
Bayesian meta-analytic techniques produce a posterior distribution 
of the mean effect size and associated variance terms. Estimates of 
uncertainty, including credible intervals, can be directly obtained 
from the posterior distributions, which offer a more interpretable 
alternative to the frequentist-based CI (Kruschke & Liddell, 2018).

Our main goal is to compare the performance of traditional and 
Bayesian methods to measure the uncertainty around the estimation 
of a mean effect in the context of ecological meta-analysis. To achieve 
this goal, we conducted a two-pronged study. First, we reviewed pub-
lished ecological meta-analyses to characterize the types of CI used in 
ecological meta-analyses, the number of replicates used in the primary 
studies (ni) included in published meta-analyses and the number of 
studies (k) that were aggregated to calculate a mean effect size. Second, 
we used the ni and k found in our literature review to inform the range 
of parameter values to use in conducting simulation experiments rel-
evant to ecological meta-analyses. In particular, we determined the 
typical levels of ni, k and the among-study variance, and then varied 
them systematically in our simulation studies. We then evaluated the 
performance of frequentist and Bayesian meta-analysis methods when 
applied to the simulated data, especially with respect to their ability 
to estimate the true mean effect and among-study variance, and their 
quantification of uncertainty intervals (i.e. confidence or credible in-
tervals). Based on our findings, we generate recommendations on the 
methods to measure uncertainty that perform best for ecological me-
ta-analysis and highlight how simple choices (sometimes overlooked by 
the investigators) can affect the results of meta-analyses.

2  | MATERIAL S AND METHODS

2.1 | Literature review to assess characteristics of 
ecological datasets

2.1.1 | Literature search

We searched the Core Collection of the ISI Web of Science database 
in March 2017; the search string for TOPIC included ([“meta-analy*” 
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OR “metaanaly*” OR “meta analy*”] AND [“climate change” OR 
“global change”]). We only included articles and reviews within the 
“Ecology”, “Environmental Sciences”, “Biodiversity Conservation” and 
“Plant Sciences” categories. The search resulted in 581 citations; the 
PRISMA diagram detailing the screening process is provided in Figure 
S1. After abstract screening, we checked the full text of the 205 arti-
cles published between 2013 and 2016. Of these, 96 papers satisfied 
the inclusion criteria for the final analysis.

2.1.2 | Criteria for inclusion

We focused on narrow sense meta-analyses: that is those that used 
a quantitative meta-analytic method to combine effect sizes that 
compared a control and a treatment group. We excluded studies 
that (a) only cited published meta-analyses, (b) reviewed meta- 
analytic methods, but did not perform a meta-analysis, (c) were 
identified as meta-analysis by the authors but did not use a meta-
analytic model or did not calculate effect sizes, (d) used the cor-
relation between two variables as an effect size and (e) were not 
‘biological meta-analyses’ (as defined in Nakagawa et al., 2017), 
such as studies related to human health or human behaviour.

2.1.3 | Information extracted

For each paper, we extracted the number of studies (k) from the text, 
figure captions, figures and supplementary materials. Here we define 
a ‘study’ as yielding an estimate of an effect, so that a given primary 
paper could generate multiple effects and thus multiple studies. The 
k values were determined at three levels, (a) overall: that is, the total k 
collected by the authors (e.g. if they conducted meta-analyses on dif-
ferent response variables, then we summed the k across these vari-
ables); (b) analysis: that is, the total k used in a particular analysis (e.g. if 
an analysis examined variation among four levels of a moderator, then 
we summed up the number of studies in each level) and (c) category: 
that is, the k included in each category of a categorical analysis. In some 
cases, the authors calculated mean effect sizes for different categories 
separately and only compared the categories using CIs (i.e. there was 
no integrated analysis incorporating a category effect). In this case, we 
considered each categories' k to apply at the ‘analysis’ level.

When available, we also recorded the number of replicates (ni) in 
the original studies. If the level of replication was unequal for the con-
trol and treatment groups, we recorded the average. Finally, from each 
meta-analysis, we also recorded the inferential paradigm used (frequen-
tist vs. Bayesian) and the method used to obtain CIs for the frequentist 
approaches (e.g. nonparametric bootstrap, normal-based, KHSJ, etc.).

2.2 | Simulation experiments

Our literature review showed that 67% of the reported primary 
studies had <10 replicates. In addition, the review of meta-analyses 

in ecology and evolution by Senior et al. (2016) showed that among-
study variation was important, and typically large, in ecological 
studies. Given these characteristics of ecological data, we simulated 
data in a full-factorial design that considered the following lev-
els: mean number of replicates n = {3, 5, 10, 15, 20, 30}, number 
of studies k = {5, 10, 15, 25, 35, 50} and among-study variance 
�2
among

= {0.1, 0.25, 0.5, 1, 2, 5}. We simulated 2,000 replicated 
meta-analyses for each combination of n, k and �2

among
. We then 

evaluated the performance of four meta-analytic methods applied 
to the simulated data: three frequentist approaches that differed in 
how they calculated CIs for a mean effect and a Bayesian approach.

2.2.1 | Simulating raw data for a study

We first determined the number of replicates for study i (ni) based 
on a random draw from a Poisson distribution:

where n is the mean number of replicates representative of ecological 
meta-analyses. We subtracted 2 to sample from the Poisson and added 
2 to the simulated n∗

i
 to make the minimum number of replicates for 

each simulated study equal 2 rather than 0. For each study, we assumed 
equal number of replicates for the control and treatment groups.

Individual observations ( j = 1, 2, … ni) for the control and treat-
ment groups were generated from a log-normal distribution (LN) 
such that for study i and observation j:

where �2
rep

 is the among-replicates variation, μ is the true overall effect, 
and yCij

 and yTij are the simulated observations for study i and obser-
vation j of the control and treatment group respectively. We set the 
among-replicate variation equal to 1 for both the control and treat-
ment. For convenience, we set the location parameter for the control 
group equal to 0, resulting in median (yC) = 1. For the treatment group 
in study i, we set median (yT) = μ + εi, where μ is the overall true treat-
ment effect (hereafter, true effect size) and εi is the random effect as-
sociated with study i. We simulated εi as:

Thus, the true effect size from any given study departs from μ due to 
its random effect (determined by εi), while the estimated effect size dif-
fers from the true effect size due to within-study sampling error (i.e. as 
influenced by ni and �2

rep
). The range of values used for �2

among
 were cho-

sen to produce a similar distribution of I2 (the proportion of variation 

(1)n∗
i
∼ Poisson (n − 2) ,

(2)ni = n∗
i
+ 2,

(3)yCij
∼ LN

(

0, �2
rep

)

,

(4)yTij ∼ LN
(

0 + � + �i, �
2
rep

)

,

(5)�i ∼ N
(

0, �2
among

)

.
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among effect sizes not explained by sampling error) to that reported 
by Senior et al. (2016) for meta-analyses in ecology and evolution  
(I2 simulation results are presented in Figure S2).

2.2.2 | Estimating the effect size and within-study  
variance

Using the raw data simulated from each study, we computed the ob-
served effect size for study i as the log response ratio (lnRRi), which 
is widely used in ecology (Nakagawa & Santos, 2012) and it is often 
a reasonable approximation of ecological phenomena (Osenberg, 
Sarnelle, & Cooper, 1997):

where yTi and yCi
 are the sample means of the treatment and control 

groups respectively.
The expected sample means for each treatment in a simulated study 

are E
(

yCij

)

= exp
(

�2
rep

∕2
)

 and E
(

yTij

)

= exp
(

� + �i +
(

�2
rep

∕2
))

. 
Thus, the log of the ratio of the expected values for the treatment 
and control groups is μ + εi, corresponding to what we call the true 
study-specific effect size.

We calculated the estimated within-study variance of the log 
ratio (eq. 1 in Hedges, Gurevitch, & Curtis, 1999; �2

withini
) as:

where SDT and SDC are the sample standard deviations of the treat-
ment and control groups, respectively, and nTi = nCi

= ni is the simu-
lated number of replicates in study i.

2.3 | Meta-analytic approaches

Given that we simulated independent data to highlight how the choice 
of uncertainty interval affects the estimation of a mean effect, we 
used a standard random-effects model (Gurevitch & Hedges, 1999). 
We comment on how our results may change with a multi-level (hierar-
chical) model in the Discussion section. We assume the simulated ef-
fect size for study i (lnRRi, calculated from Equation 6) follows a normal 
distribution with mean θi (the true effect for study i) and within-study  
variance �2

withini
:

We assume �2
withini

 is known, as calculated via Equation 7. Likewise, 
the true study-specific effect size, θi, is assumed to follow a normal 

distribution with mean μ (the true overall effect) and among-study 
variance, �2

among
 (which is sometimes referred to as τ2 in other meta- 

analytic papers).
We compared different methods to construct CIs for a mean 

effect (at the analysis level) within the frequentist methods vs. 
Bayesian credible intervals. For the frequentist-based analyses, we 
compared: (a) a CI based on a z distribution, which is a large sample 
approximation, (b) a weighted CI based on the HKSJ method, which 
does not assume a large sample and instead uses a t distribution 
and (c) bootstrap methods. For the Bayesian-based analysis, we cal-
culated the highest posterior density (HPD) credible interval.

2.3.1 | Frequentist approaches

We applied the random-effects model described by Equations 8 and 
9 with inverse variance weights using the ‘rma’ function in the r pack-
age metafor (Viechtbauer, 2010), and estimated �2

among
 with the de-

fault restricted maximum likelihood (REML) method. To calculate the 
z distribution CI, we used the default settings for the random-effects 
model in metafor, which returns a 95% CI for μ based on the normal 
distribution. To apply the HKSJ CI, we set the option knha = T in 
metafor. The resulting CI for μ is based on both a refined estimate of 
�2
among

 and a Student's t distribution (Hartung & Knapp, 2001; Sidik & 
Jonkman, 2003), which accounts for the fact that �2

among
 is estimated 

and not known. For the bootstrapped CI, we estimated the bias-
corrected nonparametric bootstrapped 95% CI for both μ and �2

among
 

via the boot package in r (Canty & Ripley, 2017). Since the choice of 
HKSJ or z distribution for the μ CI does not affect the estimation of 
�2
among

, in both cases we used metafor's function ‘confint’ to obtain 
the CI for �2

among
 (‘confint’ applies a Q-profile method in combination 

with REML).

2.3.2 | Bayesian approach

We used a ‘hybrid’ Bayesian framework to implement the random-
effects model (Equations 8 and 9) in which we treat �2

within
 as known, 

whereas a fully Bayesian model may treat �2
within

 as unknown (this hy-
brid model is comparable to the ‘empirical Bayes’ method discussed 
in Schmid & Mengersen, 2013). Initial explorations with full and hy-
brid models gave qualitatively similar results and we only include the 
hybrid model in our analysis.

We specified relatively non-informative priors for the unknown 
quantities (e.g. μ and �2

among
). For the mean effect size, μ, we speci-

fied a conjugate normal prior with a mean of 0 and large variance: 
N(0, 10,000). Given that even diffuse priors for �2

among
 can influence the 

posterior for �2
among

, particularly under small group size (Gelman, 2006), 
we explored five different priors for �2

among
 (Figures S12–S15). For the 

final analysis, convergence statistics and computational speed led us 
to focus on the Uniform(0, 10) prior for the standard deviation (�among).

The Bayesian meta-analyses were implemented in JAGS with 
the rjags r package (Plummer, 2018). For each model, we ran 

(6)lnRRi = ln

(

yTi

yCi

)

,

(7)�2
withini

=
SD2

Ti

nTi ⋅ y
2

Ti

+
SD2

Ci

nCi
⋅ y

2

Ci

,

(8)lnRRi ∼ N
(

�i, �
2
withini

)

,

(9)�i ∼ N
(

�, �2
among

)

,
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three parallel Markov chain Monte Carlo (MCMC) sequences for 
200,000 iterations, and discarded the first 100,000 iterations as the 
burn-in period. We used the R̂ convergence diagnostic (Gelman & 
Rubin, 1992) to evaluate convergence of the MCMC sequences to 
the posterior. For the final simulations, we only included runs that 
had R̂ < 1.1, and checked that the proportion of discarded runs was 
lower than 1%. Using post-burn-in MCMC samples, we computed 
posterior means for quantities of interest (e.g. μ and �2

among
) as point 

estimates. We computed 95% credible intervals as HPD intervals for 
both μ and �2

among
 using the ‘HPDinterval’ function in the coda pack-

age (Plummer, Best, Cowles, & Vines, 2006).

2.4 | Implementation and assessment of the  
meta-analysis approaches

We ran all the analyses and simulations in the R environment (R Core 
Team, 2019); code is provided in the Supporting Information. For each 
simulated dataset, we estimated μ and �2

among
 via the frequentist and 

Bayesian methods described above. We summarized the results from 
the 2,000 replicated meta-analyses for each combination of factors (n, 
k, �2

among
) and modelling approaches (i.e. frequentist and Bayesian meth-

ods to measure uncertainty). The results for the model performance 
associated with estimating �2

among
 are presented in Figures S7–S10.

We evaluated model performance using coverage, width of the un-
certainty intervals, bias and efficiency. We estimated coverage for both 
μ and �2

among
 as the proportion (out of the 2,000 simulation replicates) 

of calculated 95% uncertainty intervals (CIs for the frequentist methods 
and credible interval for the Bayesian approach) that included the corre-
sponding true value. Ideally, coverage should equal the nominal value of 
0.95 (95%). CIs for these ‘coverage proportions’ were computed using the 
‘binom.confint’ function in the r binom (Sundar, 2014) package, with the 
method ‘wilson’ (Agresti & Coull, 1998).

We summarized the perceived uncertainty for μ and �2
among

 as the 
mean width of the 95% uncertainty intervals for the 2,000 intervals for 
each scenario, and assessed how well the mean width was estimated 
using a 95% CI based on a t distribution. All else being equal, smaller 
uncertainty is a desirable feature, but not if it is accompanied by a 
reduction in coverage below the nominal level.

To evaluate bias, we calculated the mean difference between the 
point estimates for μ and �2

among
 and their true values based on the 

2,000 simulation replicates, and report a 95% CI for this estimate 
based on the t distribution. Ideally, bias should be centred on zero.

Finally, to quantify the efficiency of the point estimates, we cal-
culated the root mean squared error (RMSE) between the estimated 
and true values for μ and �2

among
 as:

where a = μ or �2
among

, â is the point estimate from each model, atrue 
is the true value used in the simulations and Nsim is the number of 
simulations.

3  | RESULTS

3.1 | Literature review to assess characteristic of 
ecological datasets

Of the 96 meta-analyses that satisfied our criteria (Table S1), 95 and 
26 provided information on the number of studies (k) and number 
of replicates (ni) associated with the original dataset respectively. 
Only three meta-analyses used a Bayesian approach. The majority 
of meta-analyses were published in Global Change Biology (23), fol-
lowed by Agriculture Ecosystems and Environment (7) and Ecology (6) 
(Figure S3 displays the full list). The quality of reporting varied, and 
is discussed in more detail in the Supporting Information. We also 
provide additional information on k and ni (by taxa, environment and 
topic) in the Supporting Information (Table S2; Figures S4 and S5).

3.1.1 | Number of studies

The number of studies (k) used to estimate an effect was highly 
skewed at the three levels we considered: overall, analysis and cat-
egory (Figure 1). The overall k ranged from 25 to 32,567 (Figure 1a 
upper panel), with a median of 273 and with relatively few (12%) 
including more than 1,000 studies. For most papers, however, anal-
yses were performed for different response variables or different 
moderators, and the k used for a particular analysis was consider-
ably lower (Figure 1a middle panel), ranging from k = 1 (for a paper 
that presented all possible comparisons, even when one potential 
analysis was represented by only a single study) to k = 8,474, with 
a median of k = 44 (i.e. 50% of meta-analysis included 44 or fewer 
studies); 16% had k ≤ 10. The number of studies included within cat-
egories ranged from k = 1 to 1,430, with a median of 16; 36% had 
k ≤ 10 (Figure 1a lower panel).

3.1.2 | Number of replicates

The distribution of the reported number of replicates in the original 
studies (ni) cited by the climate change meta-analyses was highly 
skewed, ranging from ni = 1 to 21,600, with most studies having 
only a few replicates; the median was 5 (Figure 1b). The strong 
skewness in these data led us to inspect some of the original pub-
lications from which exceptionally large ni values were reported. 
We found publications in which ni values were likely misreported 
or greatly inflated by pseudoreplication (details in Table S3 and 
Figure S6).

3.1.3 | Analytic method to estimate the uncertainty 
interval for a mean effect

In 38.5% of the papers reviewed, the method used to calculate 
the frequentist-based CI for the mean effect was not mentioned 

(10)RMSE =

�

�

�

�

∑Nsim

s=1

�

âs − atrues

�2

Nsim

,
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(Figure 2). Of the papers reporting how the CI was calculated, 
the majority used bootstrapped or z distribution CIs; only three 
papers used credible intervals (Bayesian method), and a few used 
a combination of methods (Figure 2). No papers reported using 
HKSJ method. Of the papers that did not specify the method, 
nine used Metawin (which defaults to a t distribution for the par-
ametric CI, without the KHSJ refinement); 12 papers used the 
packages meta or metafor in r (which default to a z distribution); 
and two used the Comprehensive Meta-Analysis software (which 
defaults to a z distribution). Assuming these 23 papers used the 
software defaults, then 31 papers used a z distribution and nine 
used a t distribution but without the KHSJ refinement. Thus, 
bootstrapped and z distribution CIs likely comprise the vast ma-
jority of approaches, with KHSJ CIs being entirely absent from 
our dataset.

3.2 | Simulation experiments: Estimation of a 
mean effect

The number of studies, k, used to estimate a mean effect size, μ, 
substantially affected the coverage of the frequentist methods, but 
this effect of k depended on the type of method used to estimate 
the 95% CIs (Figure 3a). For example, z distribution CIs for μ had 
coverage lower than the nominal level when k < 40, and coverage 
was appreciably lower for k < 20 (Figure 3a). Similarly, bootstrapped 
CIs had lower than nominal coverage when k < 40 (Figure 3a). In 
contrast, KHSJ CIs had close to nominal coverage over all values of k 
(Figure 3a). The Bayesian credible interval generally showed cover-
ages around 95%, but when k = 5, coverage was >95% (Figure 3a).

Coverage can be smaller than nominal levels either because of bias 
or because the width of the uncertainty interval is inappropriately 
narrow (i.e. uncertainty is underestimated). The three frequentist 
methods for computing CIs for μ used the same approach for ob-
taining point estimates and had minimal bias centred on zero (Figure 
S11a,c,e). Thus, the observed differences in coverage for μ resulted 
from differences in the width of the uncertainty interval (Figure 3b). 
The Bayesian credible interval was generally wider than the frequen-
tist-based CIs, and of the frequentist CIs, the KHSJ CI tended to be 
the widest; when k was small, the z distribution and bootstrapped CIs 
were ~1/3 smaller than they should be based on the more appropriate 
KHSJ CI (Figure 3b).

Increasing the mean number of replicates (n) in the primary studies 
did not greatly affect coverage (Figure 3b), the width of the uncer-
tainty interval (Figure 3e), bias (Figure S11c) or RMSE (Figure S11d) for 
μ. Our results were likely produced because the among-study varia-
tion dominated within-study variation over the range of levels consid-
ered for the simulation factors (as determined by the review by Senior 
et al., 2016).

Increasing the among-study variance 
(

�2
among

)

 increased the width 
of the uncertainty interval for μ (Figure 3f), but had only small effects 
on coverage (Figure 3c). Bias in the estimation of μ was negligible and 
unaffected by an increase in �2

among
 (Figure S11e), but the error in 

the estimation increased with the increase in heterogeneity (RMSE, 
Figure S11f).

F I G U R E  1   Results from the literature 
review of ecological meta-analyses:  
(a) distribution of the number of studies  
(k) reported for overall, analysis and 
category levels; the median k is indicated 
in each panel; (b) distribution of the 
number of replicates used in the original 
studies (ni), as reported in each meta-
analysis; the median ni is indicated with a 
dashed line. Note that the x-axes are on a 
log scale
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4  | DISCUSSION

Our literature review shows that ecological meta-analyses are 
highly variable in terms of how many studies (k) are included in the 
meta-analysis and the number of replicates reported in the origi-
nal publications (ni). Despite this high variability, both across and 
within meta-analyses, k and ni tend to be low. The high frequency 
of meta-analyses with comparatively few studies (k ≤ 44 in 50% of 
meta-analyses reviewed) is not unique to ecology; even lower num-
ber of studies are pervasive in medical research (Kontopantelis, 
Springate, & Reeves, 2013) where there has been an effort to de-
velop methods that improve the performance of meta-analyses in 
such scenarios (Inthout et al., 2014). Furthermore, our simulations 
show that the method used to calculate an uncertainty interval 
greatly influences how often the interval includes the true mean 
effect and is very important for producing intervals with close to 
correct coverage when k is low. Despite its importance, a large pro-
portion of the ecological meta-analyses we reviewed (38%) did not 
report the type of uncertainty interval used, and the ones that did 

report their methods used intervals that are problematic when k 
is low.

Low coverage of the z distribution CI when the number of obser-
vations (in the meta-analysis context, the number of studies, k) are 
low is well known in classical statistical contexts as well as in me-
ta-analyses (Brockwell & Gordon, 2001; Hedges et al., 1999; IntHout 
et al., 2014). In meta-analyses, however, approaches typically default 
to assuming large k and thus justify the application of the z distri-
bution. In ecology, this large sample approach is often unwarranted 
(Figure 1a). Furthermore, bootstrapped CIs are also well known to 
be problematic with small k (Hesterberg, 2015), although ecological 
meta-analyses tend to prioritize the potential for non-normal distri-
butions over concerns about small k (Adams et al., 1997)—based on 
our results, such prioritization may be misplaced.

When k is low, the CI for a mean effect size (μ) based on the z dis-
tribution is too narrow. Some practitioners have addressed this prob-
lem by not calculating CIs when k is very small (e.g. Augusto, Delerue, 
Gallet-Budynek, & Achat, 2013). Others have resorted to using boot-
strapped CIs (e.g. Thébault, Mariotte, Lortie, & MacDougall, 2014). 

F I G U R E  3   Coverage and the width of the 95% uncertainty interval for different methods used to estimate the mean effect size (μ) 
in a meta-analysis as a function of the number of studies (a, d), the mean number of replicates (b, e) and the among-study variance (c, f). 
The dashed horizontal line in panels (a)–(c) indicates the nominal value of 95%. Different colours denote the method used to estimate the 
uncertainty interval. Error bars provide the 95% CI
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Given that bootstrapped CIs also had poor coverage when k < 40, 
this approach appears to be ill-advised. In our review, nearly half of 
the mean effect sizes used in an individual analysis were calculated 
with k < 40 effect sizes, where the choice of method for computing 
uncertainty intervals matters. As a result, many effects declared as 
significant probably should not have been. This is exemplified in a re-
view of medical meta-analyses from the Cochrane Database, where 
of the 315 meta-analyses that yielded significant effects with the z 
distribution CI, only 79 were significant using the HKSJ CI (Inthout 
et al., 2014).

The default option for frequentist CIs for μ varies among soft-
ware packages. For example, a t distribution CI (but without the 
HKSJ refinement) is Metawin's default, whereas the z distribution 
is the default in the Comprehensive Meta-Analysis software and 
in the r packages meta and metafor (metafor is one of the most 
common software packages currently in use by ecologists). For 
those planning to conduct a random-effects meta-analysis using 
frequentist methods, we advise use of the HKSJ CI, which em-
ploys both a weighted estimator of the variance for the overall 
effect size and a t distribution for its associated CI (this can be 
set up in metafor using the option knha = T). Sánchez-Meca and 
Marín-Martínez (2008) report that the HKSJ method outperforms 
the simple CI-based on the t distribution. However, in some sce-
narios, coverage could be as low as 90% even using the HKSJ CI, 
for example, when heterogeneity is high, k < 10, and the number 
of replicates varies greatly among studies (Inthout et al., 2014). 
In our simulations that did not include highly uneven number of 
replicates, we showed that HKSJ CI's and the Bayesian credible 
intervals provide accurate (or at least conservative, >95%) cover-
age and performed best. We encourage researchers to be aware 
of the software defaults when calculating an uncertainty interval, 
and to report the method used.

The climate change meta-analyses showed exceedingly high 
variation in the number of replicates reported (ni), spanning five 
orders of magnitude, but the majority of values were low. In fact, 
ni < 10 in 67% of the cases, and ni ≤ 5 in 51% of the cases we re-
viewed. This pattern may be similar in other fields of ecology (Table 
S2; Figures S4 and S5). For example, a competition meta-analysis 
found ni ranging from 1 to 1,455, with a median of 10 (Gurevitch, 
Morrow, Wallace, & Walsh, 1992). To obtain a more accurate es-
timate of μ, some authors specify a minimum ni to calculate mean 
effect sizes (Gurevitch et al., 1992; Schirmel, Bundschuh, Entling, 
Kowarik, & Buchholz, 2016). Such censuring might improve CI 
performance by reducing variation in replication among studies 
(Inthout et al., 2014) but at the high cost of discarding important 
information. While one would in general expect better estimates 
with more replication, our simulation experiment did not show im-
portant effects of the mean number of replicates on the estima-
tion of and inferences about μ. A similar insensitivity to the number 
of replicates has been observed in other studies (Sánchez-Meca 
& Marín-Martínez, 2008), although we included fewer replicates 
than most other simulations. Variation in replication among studies 
should produce variation in within-study variance, especially when 

the number of replicates is small. However, in our simulations, 
among-study variation was much larger than within-study varia-
tion, consistent with the characteristics of ecological meta-anal-
yses (Senior et al., 2016), minimizing the role of variation in the 
number of replicates.

When the number of replicates reported (ni) was unusually high, 
we checked a few of the original papers cited in each meta-analysis. 
Upon revisiting 17 of the original publications, we found at least 
15 cases in which ni was misreported (Table S3). This manifested 
in different ways. Some meta-analyses reported the total ni in an 
experiment instead of the number of replicates per treatment. In 
other cases, authors reported the total ni from repeated measure-
ments or the numbers of individuals rather than the number of true 
replicates (e.g. plots or cages). There were also cases in which we 
were unable to verify the origin of the number reported in the me-
ta-analysis. An incorrect ni decreases the sampling variance for that 
effect size, which affects the weights and also the estimation of the 
overall heterogeneity (Noble et al., 2017). Researchers conducting 
a meta-analysis should be cautious when extracting data from the 
original studies to avoid misreporting (or inflating) the number of 
replicates. Publication of the data and code used to conduct a me-
ta-analysis would also be useful to inform research on best practices 
for meta-analysis.

In our simulations using a random-effects model, the perfor-
mance in the estimation of the among-study variance 

(

�2
among

)

 was 
better when the true �2

among
 was high (Figures S4–S7). In agree-

ment with Viechtbauer (2007), we observed that the Q-profile CI 
method for �2

among
 performed better than the bootstrap method 

(Figures S7–S10). The Bayesian method performed best, but had 
coverage above the nominal level when the number of studies 
was low (k < 20). Bayesian methods led to higher perceived un-
certainty in such cases, which could be real, but this could also be 
a consequence of positive bias in the �2

among
 estimates, which was 

more pronounced for the Bayesian methods when k < 20. In this 
scenario, one approach to improve coverage is to use priors for 
�2
among

 that perform better when k is low (Gelman, 2006). Another 
solution is to specify more informative priors for �2

among
 based on 

a synthesis of past publications (Higgins et al., 2009). One reason 
to desire good estimation of �2

among
 is because overestimation of 

this variance component can lead to higher perceived uncertainty 
in the estimate of μ. An additional reason is that the estimates of 
�2
among

 represent real variation in effects and could be of impor-
tance in risk assessment.

In the initial explorations with the full Bayesian model, the MCMC 
chains for μ converged quickly, but they converged more slowly for 
�2
among

, often falling into a ‘zero variance trap’ (Gelman, 2004) when 
the true among-study variance was close to zero. In general, con-
vergence and mixing problems were most frequent for low k and 
low �2

among
. While low �2

among
 is rare in ecology, low k is not. Of the 

priors we explored (Figures S12–S15), the folded-t and the uni-
form prior for the standard deviation performed best when k was 
low (we chose the uniform prior for the final simulations because 
it ran slightly faster). In our simulations, the hybrid Bayesian model 
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exhibited the practical advantages of the Bayesian methods (e.g. 
produces full posteriors and direct evaluation of uncertainty with-
out approximating assumptions, among others), and was easy (and 
faster) to implement than the full model. In contrast, a full Bayesian 
approach may be more useful for multi-level models that include 
missing data, hierarchical structures and/or covariate effects (Ogle 
et al., 2013), and could benefit from informative priors for �2

among
, 

particularly when k is low.
Our study simulated independent effect sizes. Often though, 

observed effect sizes are not independent (e.g. multiple observed 
effect sizes might be obtained from a single published article). As 
observed effect sizes within a group might respond similarly (due 
to similar methods, or similar environmental conditions), some of 
the among-study variation could be common to all members of a 
group or subgroup. Multi-level (hierarchical) models can be used to 
account for this. We believe that our results, including the insen-
sitivity of our results to n, would not be materially altered in such 
situations, assuming the among-study variation still dominates the 
within-study variation. There are some challenges to be faced, how-
ever, when applying our results to more complex multi-level models. 
In particular, although the r package metafor has a function that han-
dles multi-level models (rma.mv), the KHSJ adjustment is not avail-
able in this context, and the best that can be done with metafor is to 
construct t-based CIs of the mean (also referred to as conditional t 
test). For multi-level models, these t-based CIs have inflated error 
rates (Luke, 2017; C. Song, S.D. Peacor, C.W. Osenberg, & J.R. Bence, 
unpublished data), although they do outperform normal-based CIs 
(C. Song, pers. comm.). C. Song, S.D. Peacor, C.W. Osenberg, and 
J.R. Bence (unpublished data) speculated that the inflated error rates 
of t-based CIs resulted from not accounting for uncertainty in es-
timated variances. Methods exist for adjusting tests and CIs to ac-
count for uncertainty in estimated variances in multi-level models, 
such as the Kenward-Rogers adjustment, or simulation of null dis-
tributions (Halekoh & Hojsgaard, 2014), but to our knowledge these 
have not been implemented in any readily available software for 
conducting meta-analyses.
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PRISMA diagram 

For the main literature review to assess characteristics of ecological datasets we searched 
the Core Collection of the ISI Web of Science database in March 2017. The search string 
for TOPIC included ([“meta-analy*” OR “metaanaly*” OR “meta analy*”] AND [“climate 
change” OR “global change”]). We only included articles and reviews within the 
“Ecology”, “Environmental Sciences”, “Biodiversity Conservation” and “Plant Sciences” 
categories. 

We used a modified PRISMA diagram (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses; Moher et al., 2009) to describe the screening, eligibility and 
inclusion or studies in our literature review (Figure S1). Abstract screening was conducted 
using the viewer classification tool in the R package metagear (Lajeunesse, 2016). We only 
consider papers published between the years 2013-2016 for our review. The PRISMA 
diagram was constructed using the R package PRISMAstatement (Wasey, 2019): 

 

Figure S1. PRISMA diagram. 
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Distribution of I2 

To simulate datasets representative of ecological meta-analysis, we chose values of the 
among-study variance (for our combinations of mean number of replicates, n, and number 
of studies, k) that allowed us to generate a distribution of I2 similar to the one reported by 
Senior et al. (2016) for meta-analysis in ecology and evolution. I2 is useful for comparing 
variation between different studies because it measures the percentage of variation between 
effect sizes that it is not explained by sampling error. Senior et al. (2016) reported I2 for 86 
studies that included information on heterogeneity: median I2= 84.67% and mean I2 = 
91.69% (Senior et al., 2016). Based on the I2 calculated from our simulated datasets (Figure 
S2), an among-study variance of 2

among = 2 generated an I2 similar to the mean I2 observed 
by Senior et al. (2016) for values of n and k that are frequently found in the results of our 
literature review. 

 

 

Figure S2. Mean I2 as a function of the true (simulated) among-study variance for different 
combinations of the mean number of replicates, ݊௜, and number of studies, k, in the simulated 
datasets. 
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Studies included in the review of climate change meta-analyses 

We reviewed a total of 96 meta-analyses on climate change experiments focused on 
ecological responses, from 40 journals. The journal that published most of the meta-
analyses was Global Change Biology, followed by Agriculture Ecosystems & Environment, 
and Ecology. The number of climate change meta-analyses reviewed by journal is 
presented in Fig. S3, and a short name and DOI for each paper is presented in Table S1. 

 

 

Figure S3. Number of climate-change meta-analyses reviewed, summarized by journal in which 
each was published, between 2013 and 2016. 
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Table S1. Climate change meta-analyses analyzed in the literature review. 

Paper reviewed Journal name DOI 
Abear et al 2014 Fungal Ecology 10.1016/j.funeco.2013.01.009 
Aguilera et al 2013 Agriculture Ecosystems & 

Environment 
10.1016/j.agee.2013.02.003 

Albert et al 2015 Oikos 10.1111/oik.02512 
Alldred and Baines 2016 Ecological Applications 10.1890/14-1525 
Anderson 2016 New Phytologist 10.1111/nph.13693 
Augusto et al 2013 Global Biogeochemical Cycles 10.1002/gbc.20069 
Bai et al 2013 New Phytologist 10.1111/nph.12252 
Baig et al 2015 Global Change Biology 10.1111/gcb.12962 
Barrett and Hollister 2016 Polar Research 10.3402/polar.v35.25405 
Bernhardt-Romermann et al 
2015 

Global Change Biology 10.1111/gcb.12993 

Broberg et al 2015 Environmental Pollution 10.1016/j.envpol.2014.12.009 
Chan and Connolly 2013 Global Change Biology 10.1111/gcb.12011 
Chen et al 2015 Environmental Pollution 10.1016/j.envpol.2015.07.033 
Deng et al 2015 Ecology 10.1890/15-0217.1 
Diehl et al 2013 Journal Of Applied Ecology 10.1111/1365-2664.12032 
Feng et al 2015 Global Change Biology 10.1111/gcb.12938 
Finzi et al 2015 Global Change Biology 10.1111/gcb.12816 
Gamfeldt et al 2015 Oikos 10.1111/oik.01549 
Garcia-Palacios et al 2015 Global Change Biology 10.1111/gcb.12788 
Garssen et al 2015 Global Change Biology 10.1111/gcb.12921 
Goessling et al 2015 Functional Ecology 10.1111/1365-2435.12442 
Gornish and Prater 2014 Journal Of Vegetation Science 10.1111/jvs.12150 
Haddad et al 2014 Conservation Biology 10.1111/cobi.12323 
Harvey et al 2013 Ecology And Evolution 10.1002/ece3.516 
He and Dijkstra 2014 New Phytologist 10.1111/nph.12952 
He and Silliman 2016 Ecological Monographs 10.1002/ecm.1221/suppinfo 
Hollander and Bourdeau 2016 Ecology And Evolution 10.1002/ece3.2271 
Humbert et al 2016 Global Change Biology 10.1111/gcb.12986 
Iacarella et al 2015 Ecological Applications 10.1890/14-0545.1 
Jackson 2015 Ecology 10.1890/15-0171.1 
Jackson et al 2016 Global Change Biology 10.1111/gcb.13028 
Jia et al 2016 Frontiers In Plant Science 10.3389/fpls.2016.01623 
Jing et al 2016 Frontiers In Plant Science 10.3389/fpls.2016.01774 
Kampf et al 2016 Science Of The Total 

Environment 
10.1016/j.scitotenv.2016.05.06
7 

Kivlin et al 2013 American Journal Of Botany 10.3732/ajb.1200558 
Kroecker et al 2013 Global Change Biology 10.1111/gcb.12179 
Kuebbing and Nunez Global Change Biology 10.1111/gcb.12711 
Lefevre 2016 Conservation Physiology 10.1093/conphys/cow009 
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Lemoine et al 2016 Ecology 10.1002/ecy.1506 
Li et al 2016 Acta Oecologica-International 

Journal Of Ecology 
10.1016/j.actao.2016.10.008 

Liang et al 2016 Biogeosciences 10.5194/bg-13-2689-2016 
Liu et al 2013 Plant And Soil 10.1007/s11104-013-1806-x 
Liu et al 2014 Global Change Biology 10.1111/gcb.12517 
Liu et al 2016 Global Change Biology 10.1111/gcb.13156 
Llabres et al 2013 Global Ecology And 

Biogeography 
10.1111/j.1466-
8238.2012.00784.x 

Loydi et al 2013 Journal Of Ecology 10.1111/1365-2745.12033 
Lu 2015 Mitigation And Adaptation 

Strategies For Global Change 
10.1007/s11027-014-9564-5 

Lu et al 2013 Ecology  

Luo et al 2015 Ecology 10.1890/14-2228.1.sm 
Mafongoya et al 2016 Agriculture Ecosystems & 

Environment 
10.1016/j.agee.2016.01.017 

Maillard and Angers 2014 Global Change Biology 10.1111/gcb.12438 
Martinson and Fagan 2014 Ecology Letters 10.1111/ele.12305 
McCary et al 2016 Ecology Letters 10.1111/ele.12562 
McDevitt-Irwin et al 2016 Marine Ecology Progress Series 10.3354/meps11848 
McGrath and Lobell 2013 Plant Cell And Environment 10.1111/pce.12007 
Michalet et al 2014 Functional Ecology 10.1111/1365-2435.12136 
Mundim and Bruna 2016 American Naturalist 10.1086/687530 
Murphy and Romanuk 2014 Ecology And Evolution 10.1002/ece3.909 
Oduor et al 2016 Journal Of Ecology 10.1111/1365-2745.12578 
Orzechowski et al 2015 Global Change Biology 10.1111/gcb.12963 
Pan et al 2016 Agriculture Ecosystems & 

Environment 
10.1016/j.agee.2016.08.019 

Paolucci et al 2013 Diversity And Distributions 10.1111/ddi.12073 
Pardo et al 2015 Global Change Biology 10.1111/gcb.12806 
Przeslawski et al 2015 Global Change Biology 10.1111/gcb.12833 
Qiu 2015 Global Ecology And 

Biogeography 
10.1111/geb.12360 

Rodriguez-Castaneda et al 
2013 

Global Ecology And 
Biogeography 

10.1111/j.1466-
8238.2012.00795.x 

Sasmito et al 2016 Wetlands Ecology And 
Management 

10.1007/s11273-015-9466-7 

Schirmel et al 2016 Global Change Biology 10.1111/gcb.13093 
Shan and Yan 2013 Atmospheric Environment 10.1016/j.atmosenv.2013.02.0

09 
Shantz and Burkepile 2014 Ecology  

Shantz et al 2016 Ecology Letters 10.1111/ele.12538 
Shi and Han 2014 Global Biogeochemical Cycles 10.1002/2014GB004924 
Skinner et al 2014 Science Of The Total 10.1016/j.scitotenv.2013.08.09
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Environment 8 
Slattery et al 2013 Journal Of Experimental Botany 10.1093/jxb/ert207 
Sorte et al 2013 Ecology Letters 10.1111/ele.12017 
Strain et al 2014 Global Change Biology 10.1111/gcb.12619 
Thebault et al 2014 Journal Of Ecology 10.1111/1365-2745.12236 
Tian et al 2015 Agriculture Ecosystems & 

Environment 
10.1016/j.agee.2015.02.008 

Trap et al 2016 Plant And Soil 10.1007/s11104-015-2671-6 
van der Kooi et al 2016 Environmental And 

Experimental Botany 
10.1016/j.envexpbot.2015.10.0
04 

van Lent et al 2015 Biogeosciences 10.5194/bg-12-7299-2015 
Vicente et al 2016 Agriculture Ecosystems & 

Environment 
10.1016/j.agee.2016.10.024 

Wang et al 2013 Agriculture Ecosystems & 
Environment 

10.1016/j.agee.2013.06.013 

Wang et al 2014 Global Change Biology 10.1111/gcb.12620 
Wooliver et al 2016 Functional Ecology 10.1111/1365-2435.12648 
Worchel et al 2013 Microbial Ecology 10.1007/s00248-012-0151-6 
Wu et al 2016 Agriculture Ecosystems & 

Environment 
10.1016/j.agee.2016.06.028 

Xu et al 2013 Biogeosciences 10.5194/bg-10-7423-2013 
Yendrek et al 2013 Global Change Biology 10.1111/gcb.12237 
Yoon and Read 2016 Oecologia 10.1007/s00442-016-3560-2 
Yuan and Chen 2015 Nature Climate Change 10.1038/NCLIMATE2549 
Yue et al 2015 Journal Of Geophysical 

Research-Biogeosciences 
10.1002/2014JG002885 

Zhang et al 2015 Global Ecology And 
Biogeography 

10.1111/geb.12235 

Zhao et al 2016 Global Change Biology 10.1111/gcb.13185 
Zhou et al 2016 Global Change Biology 10.1111/gcb.13253 
Zu et al 2013 Environmental Research Letters 10.1088/1748-

9326/8/4/044027 
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Quality of reporting 

The quality of reporting in the meta-analysis we reviewed varied, but was usually low. This 
agrees with Gates (2002) and his assessment that research on best practices for ecological 
meta-analyses has lagged behind other disciplines, such as medicine. We give a brief 
summary in this section based on the data compiled for our study (available as a an Excel 
file in the Dryad data repository https://doi.org/10.5061/dryad.zw3r22863). For example, 
only nine meta-analyses carefully explained the literature search by providing key words, 
explaining the screening process, and including the references of the original studies. Most 
papers (67 of 96) did not explain the screening process, or explained it only partially (18 of 
96); only 11 papers provided a full explanation. 68 papers did and 28 did not provide 
specific keywords. The majority of papers (84 of 96) provided the references to the original 
articles, four provided partial information (Authors and year), five did not provide it, and in 
three cases the link to the Supporting Information (where this information may have been 
available) was broken and the corresponding author did not respond our email requesting 
the supplementary files for their paper.  

Most meta-analyses (60 of 96) did not provide their original data (to replicate their 
effect size calculation for example), and eight provided some of the raw data collected; for 
eight we could not access the supplementary data (as explained above), and only 25 meta-
analysis provided all the raw data compiled from the original publications. Twenty-three 
papers that did not provide the original data still provided the effect sizes, but only nine of 
these provided the variance or standard deviation of the estimated effect size, and only six 
of these papers provided information for the weights. 

The meta-analytic model and the type of weighting used were not always specified. 
The type of meta-analytic model was reported more often, with random-effects and mixed-
effects models being the more popular. In 13 papers a meta-analytic model was not 
mentioned, and in those papers, the authors appeared to use the confidence intervals to 
compare differences between effect sizes. Some papers combined more than one type of 
meta-analytic model, and others used standard, unweighted, tests (e.g., a t-test or ANOVA) 
to analyze the effect sizes. Forty papers weighted by inverse variance (two of this combined 
inverse variance with other weighting schemes), but 28 did not mention anything about 
weighting.  

Additional data from our literature search 

 

Exploratory literature search by sub-disciplines. At the beginning of our project, we 
conducted a literature search aimed at characterizing ecological meta-analyses in different 
ecological sub-disciplines or research areas. We searched the Core Collection of the Web of 
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Science database in May 2016 to obtain a set of meta-analyses from different sub-
disciplines of ecology that represented highly cited meta-analyses, and thus have become 
some of the most influential examples in the field. The TOPIC search string was specified 
as ([“meta-analy*” OR “metaanaly*” OR “meta analy*”] AND [“key words”]). The “key 
words” used to select the sub disciplines included “ocean acidification”,  “food limitation”, 
“multiple stressors”, or [“behavi*” AND “ecology”]. Subsequently, for each of these sub 
disciplines, we filtered the results by research area “Environmental Sciences and Ecology” 
and sorted the results by “times cited”. This led to 65 meta-analyses publications that we 
considered further. We screened 64 abstracts and rejected 39 because they didn’t meet our 
inclusion criterion (same as in the main literature search). We consulted the pdfs for the 
remaining 25 citations. The goal (not always achieved) was to have at least 10 well cited 
meta-analyses in each topic. For some topics such as food limitation and multiple stressors 
only a few meta-analyses were returned by the search; in those cases we reviewed all 
papers. When the same meta-analysis appeared in two sub-disciplines (e.g. “multiple 
stressors” and “ocean acidification”), we assigned it to one sub-discipline and only counted 
them once. From this preliminary search, we report here the results for the median number 
of replicates and the median number of studies (Table S2, Figure S4). For this preliminary 
search we did not collect information on type of grouping for the number of studies 
(overall, analysis, and category), but instead combined all types of comparisons. 

 

Table S2. Exploratory literature search by research area. For each research area we show the 
number of meta-analyses reviewed, the median number of studies, and the median number of 
replicates.  

Topic Meta-
analyses 
included 

Median number 
of studies 

Median number 
of replicates 

Behavior ecology 7 14.5 5 
Multiple stressors 7 11 4 
Food limitation 6 9.5 4.5 
Ocean acidification 5 10 No information 
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Figure S4. Results from the exploratory literature search on sub-disciplines of ecological meta-
analyses. A) distribution of the number of studies (k) by sub-discipline; B) distribution of the number 
of replicates (݊௜) used in the primary papers, as reported in each meta-analysis. Replication was not 
reported in any meta-analyses for ocean acidification. Note that the x-axes are on a log scale. 

 

Meta-analyses on these other topics were generally consistent with the summaries 
for climate change (e.g., median k’s were all <40 and median ݊௜’s were all <6). We decided 
on “climate change/global change” for the final literature search because it generated the 
most information and it is an important current topic that has generated many meta-
analyses. Five papers found in the sub-disciplines search were also found (and included) 
when running the final climate change literature review. 

 

Additional data for the global change meta-analyses. Because the climate/global change 
search was broad, we were able to categorize the meta-analyses into topic areas (multiple 
stressors, invasive species, habitat loss, ecosystem processes, climate change, biotic 
interactions), type of organism or variable measured, and type of environment. The patterns 
in these groups also were fairly consistent (Figure S5). 
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A. Median number of studies 

 

B. Median number of replicates 

 

Figure S5. Additional results for the climate/global change meta-analysis. Variability on the median 
number of studies at the analysis level (A) and the median number of replicates (B) by type of 
organism (or variable) measured, type of environment, and meta-analysis topic. 

Erroneous number of replicates 

In some cases, the number of replicates, ݊௜, reported in the published meta-analyses of 
climate change seemed very high (i.e., in the hundreds or thousands). To examine those 
values, we sorted the number of replicates by mean ݊௜ (the average number of replicates for 
the control and treatment groups when reported separately), and picked the top ten papers 
with the highest ݊௜ and revisited the original publications. The meta-analyses were: 1) 
Anderson, 2016; 2) Oduor et al., 2016; 3) van Lent et al., 2015; 4) Hollander & Bourdeau, 
2016; 5) Rodriguez-Castaneda et al., 2013; 6) Gornish & Prater, 2014; 7) Baig et al., 2015; 
8) Shi & Han, 2014; 9) Lemoine et al., 2016; and 10) Jackson et al., 2016. From each meta-
analysis paper, we aimed to double-check at least two of the original publications (if they 
were available to download) in which the reported number of replicates was high; however, 
Gornish & Prater (2014) had only one unusually high value and two of the original 
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publications were not accessible (reported by Shi & Han, 2014), so we checked 17 (not 20) 
original publications. The number of replicates appeared to have been inflated for 15 of the 
17 publications (Table S3), due either to pseudoreplication in the original paper, poor 
reporting of the original data and/or study design, or misinterpretation on the part of the 
meta-analyst. 

 

Table S3: Papers examined for evidence of misreporting in the number of replicates (݊௜). We 
indicate the meta-analysis, the original paper cited in the meta-analysis, the number of replicates 
reported in the meta-analysis, and details on why we thought the number reported does not 
represent the actual number of replicates per treatment. The asterisk corresponds to the two 
sampling sizes that seem to have been reported appropriately.  

Paper 
reviewed Paper cited 

Number of 
replicates 
reported Details 

Anderson, 
2016 

Pfeifer-
Meister et al., 
2013 

2000 We were unable to verify the origin of the number 
reported by Anderson 2016, but 2000 is far 
greater than a typical number of experimental 
replicates. 

Anderson, 
2016 

Gornish et 
al., 2015 

21600 We were unable to verify the origin of the number 
reported by Anderson 2016, but 21600 is far 
greater than the number of experimental 
replicates. 

Oduor et al., 
2016 

Wright & 
Stanton, 
2007 

518  518 is the minimum number of plants surviving to 
flower, which is greater than the experimental 
replicates; there were two replicates of 16 
pollination crosses, 27 of those produced enough 
F2 seeds for the experiment and they were 
planted on five replicate blocks in each of six 
study sites. 

Oduor et al., 
2016 

Bennington & 
McGraw, 
1995 

1280 1280 is the number of seeds from floodplain sites 
summed across all treatments and blocks, rather 
than the number of plots. 

van Lent et al., 
2015 

Werner et al., 
2006 

1813 1813 is the total number of repeated 
measurements for a few control chambers for one 
experiment, rather than replicates for the control 
treatment. 

van Lent et al., 
2015 

Verchot et 
al., 1999 

256 The reported ݊௜ is the total number of 
observations across all plots, rather than the 
number of plots per treatment. 

Hollander & 
Bourdeau, 
2016 

Johnson & 
Black, 2008 

951 We were unable to verify the origin of the number 
reported by Hollander & Bourdeau. Johnson & 
Black mentioned an average sample size of 52 
snails collected from each of 83 populations. 

Hollander & 
Bourdeau, 
2016 

Parsons, 
1997 

379* 379 is the number of snails at the Albany site 
used in the shell shape regression. 

Rodriguez-
Castaneda et 

Farnsworth & 
Ellison, 1991 

459 The value used was the number of leaves 
damaged from plants under a canopy versus 
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al., 2013 number of leaves damaged on plants growing in 
full sun, neglecting the limited number of plants. 

Rodriguez-
Castaneda et 
al., 2013 

Delacerda et 
al., 1986 

750 Rodriguez-Castaneda et al. reported the number 
of leaves damaged on 10 saplings. 

Gornish & 
Prater, 2014 

Way & Sage, 
2008 

400* 1000 seeds were grow to seedlings; they thinned 
seedlings per pot and had 400 trees per 
treatment per year. 

Baig et al., 
2015 

Lavola et al., 
2013 

288 Baig et al. reported the total number of seeds in 
each chamber, rather than the number of 
chambers exposed to different temperature and 
CO2 conditions. 

Baig et al., 
2015 

Calfipietra et 
al., 2003 

144 Baig et al. reported the number of trees across all 
three replicate plots, instead of the number of 
plots within each treatment (with or without CO2). 

Lemoine et al., 
2016 
(biodiversity) 

Zhang et al., 
2014 

216 We were unable to verify the origin of the number 
reported by Zhang et al. The first experiment had 
9 blocks involving 8 species. Each block had 36 
plots. In total there were 324 plots. Only 2 
replicates for spatial treatments were mentioned, 
but there were more treatments. 

Lemoine et al., 
2016 
(biodiversity) 

Allan et al., 
2011 

240 Allan et al. state the experiment contains 82 plots, 
and do not state how many plots are in each 
treatment. 

Jackson et al., 
2016 

Muyssen et 
al., 2010 

100 Jackson et al. cited the number of individuals 
from each clone (3) that they used in each 
treatment, but it is unclear how many independent 
setups were used. 

Jackson et al., 
2016 

Jokinen et 
al., 2011 

100 Jokinen et al. reported number of fish (݊௜= 50) 
from each of two replicate cages per treatment in 
a tank (݊௜= 100 per treatment). It appears the real 
number of replicates was the number of cages 
(݊௜=2) inside each experimental tank. 

  

Across all meta-analyses we reviewed, the number of replicates, ݊௜, reported varied from 1 
to 2.16×104, with a median of 5 and a mean of 19.73. The distribution of ݊௜ for each meta-
analysis is presented in Figure S6. 
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Figure S6. Distribution of the number of replicates, ݊௜, in the original studies for each of the 26 
meta-analysis publications in our review that provided the original data. The boxplots represent the 
median (thick vertical line), the 25th and 75th percentiles (box), the upper whisker extends from the 
box to the larger value no further than 1.5xIQR, and the lower whisker extends from the box to the 
smallest value at most 1.5xIQR. Extreme values that exceed the whiskers are plotted individually as 
solid points. 
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Model performance associated with estimating the among-study variance (ો܏ܖܗܕ܉૛ )  

Because other studies have explored the best methods to estimate the uncertainty intervals 
for the among-study variance (Viechtbauer, 2007; Veroniki et al., 2016) and it was not the 
main focus of this study, we only compared: 1) a parametric bootstrapped 95% CI (for the 
bootstrap approach), 2) a parametric CI using the Q-profile method (for both the z-
distribution and HKSJ approaches), and 3) the HPD (high posterior density) interval of the 
posterior distribution of the among-study variance (for the Bayesian approach).  

The ability to estimate ߪ௔௠௢௡௚
ଶ 	was most affected by the true among-study variance 

and the number of studies. An increase in the number of studies, k, significantly improved 
the coverage of the bootstrap method to estimate the CI for ߪ௔௠௢௡௚

ଶ 	in most scenarios 
(Figures S8A-S10A). However, an increase in the number of studies decreased coverage 
when the true among-study variance was very low (Figure S7A). In all combinations in 
which ߪ௔௠௢௡௚

ଶ  was moderate to high, the Q-profile and Bayesian methods showed coverage 
near or at the nominal values (Figures S8A-S10A); the Bayesian method yielded coverages 
>95% when k < 20, and the Q-profile method showed coverage <95% when k > 20. 

Using dataset characteristics typical of ecological meta-analyses, our simulations 
showed that the coverage for ߪ௔௠௢௡௚

ଶ  was not significantly affected by the mean number of 
replicates, n (Figure S8B). However, when the true among-study variance was low, all 
methods failed to achieve good coverage for n < 10 (Figure S7B). When n and the true 
among-study variance were low (݊ = ௔௠௢௡௚ߪ,5

ଶ = 0.5, Figure S7A), the coverage for 
௔௠௢௡௚ߪ
ଶ  was below the nominal level (95%) for all methods and combinations of k and n, 

except for the Bayesian method when k < 25. Coverage decreased substantially with 
increasing k (Figure S7A). On the other hand, when n was high, even if the among-study 
variance was low, there were cases in which coverage was close to the nominal level 
(݊ = ௔௠௢௡௚ߪ ,20

ଶ = 0.5, Figure S9A).  
When the among-study variance was close to zero, coverage for ߪ௔௠௢௡௚

ଶ  was low 
for all methods (Figures S7C-S10C). This is likely the result of a small but positive bias in 
the estimates of ߪ௔௠௢௡௚

ଶ 	(Figures S7I-S10I). With little real variation among studies, the 
perceived uncertainty was correctly viewed as low, but the bias led to CIs that frequently 
did not overlap the true values. 

For the combination of simulation factors that we evaluated (Figures S7-S10), the 
Bayesian method over-estimated the among-study variance, when k was low or the among-
study variance was large. The larger bias in the Bayesian method was also reflected in a 
large RMSE when k was low. The bootstrap approach to assessing uncertainty in the 
among-study variance underperformed in all combinations of parameters, rarely achieving 
the nominal level of coverage; this is likely because the width of the CI for the among-
study variance was always low for the bootstrap approach (Figures S7-S10). 
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 Simulation parameters: ܖ = ૞,ܓ = ૛૞,ો܏ܖܗܕ܉૛ = ૙.૞ 

 

Figure S7. Performance measures of the estimation of the among-study variance as a function of 
the number of studies (left column), the number of replicates in the original studies (middle column) 
and the simulated among-study variance (right column). Performance was assessed using 
coverage (A, B, C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), 
and RMSE (J, K, L). Error bars provide the 95% CI for panels A-I. Please note different scales in the 
y-axis for bias and width of the uncertainty interval. Simulation parameters: n = 5, k = 25,σୟ୫୭୬୥ଶ =
0.5, except for the cases in which that parameter was varied. 
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 Simulation parameters: ࢔ = ૞,࢑ = ૛૞,܏ܖܗܕ܉࣌૛ = ૛ 

 

Figure S8. Performance measures of the estimation of the among-study variance as a function of 
the number of studies (left column), the number of replicates in the original studies (middle column) 
and the simulated among-study variance (right column). Performance was assessed using 
coverage (A, B, C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), 
and RMSE (J, K, L). Error bars provide the 95% CI for panels A-I. Please note different scales in the 
y-axis for bias and width of the uncertainty interval. Simulation parameters:	݊ = 5,݇ = ୟ୫୭୬୥ଶߪ,25 =
2, except for the cases in which that parameter was varied. 
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 Simulation parameters: ࢔ = ૛૙,࢑ = ૛૞,܏ܖܗܕ܉࣌૛ = ૛ 

 

Figure S9. Performance measures of the estimation of the among-study variance as a function of 
the number of studies (left column), the number of replicates in the original studies (middle column) 
and the simulated among-study variance (right column). Performance was assessed using 
coverage (A, B, C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), 
and RMSE (J, K, L). Error bars provide the 95% CI for panels A-I. Please note different scales in the 
y-axis for bias and width of the uncertainty interval. Simulation parameters: ݊ = 20, ݇ = 25, ୟ୫୭୬୥ଶߪ =
2, except for the cases in which that parameter was varied. 
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 Simulation parameters: ࢔ = ૛૙,࢑ = ૛૞,܏ܖܗܕ܉࣌૛ = ૙.૞ 

 

Figure S10. Performance measures of the estimation of the among-study variance as a function of 
the number of studies (left column), the number of replicates in the original studies (middle column) 
and the simulated among-study variance (right column). Performance was assessed using 
coverage (A, B, C), perceived uncertainty (width of the uncertainty interval) (D, E, F), bias (G, H, I), 
and RMSE (J, K, L). Error bars provide the 95% CI for panels A-I. Please note different scales in the 
y-axis for bias and width of the uncertainty interval. Simulation parameters: ݊ = 20, ݇ = 25, ୟ୫୭୬୥ଶߪ =
0.5, except for the cases in which that parameter was varied. 
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Bias and RMSE in the estimation of the mean effect 

Here, we report the bias and RMSE for the four methods used to estimate the mean effect 
as a function of the number of studies (݇), the mean number of replicates (݊), and the 
among-study variance (ߪୟ୫୭୬୥ଶ ). The RMSE was calculated using the “rmse” function from 
the package Metrics (Hamner & Frasco, 2018). All three frequentist methods yield the 
same point estimates for  (and thus bias and RMSE) (Figure S11) but they may differ in 
their coverage, which also is affected by the width of the uncertainty interval. The Bayesian 
method gave very similar (but not identical) estimates of bias. 

 

 

Figure S11. Bias and RMSE from the estimation of a mean effect in 2000 replicated meta-analyses 
as a function of the number of studies (A, B), the mean number of replicates in the original studies 
(C, D), and the among-study variance (E, F). Simulation parameters: ݊	 = 5, ݇ = 25, amongߪ

2 = 2, 
except for the cases in which that parameter was varied.  Error bars provide the 95% CI for panels 
A-E.  
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Explorations on the best priors for the among-study variance 

Priors definition 

There are several relatively “non-informative” priors that can be used for the among-study 
variance in Bayesian models. Priors can be assigned for the standard distribution, the 
variance, or the precision. Especially when the number of studies is small, the posterior 
distribution of the among-study variance can be very sensitive to the choice of prior 
(Gelman, 2006; Lambert et al., 2005). For these reasons, we explored five different priors 
for the among-study variance based on suggestions from previous studies (Gelman, 2006; 
Lambert et al., 2005). These included: 

1) Uniform distribution for the standard deviation, we tested: 
• Uniform (0, 1) 
• Uniform (0, 10) 
• Uniform (0, 100) 

Below we display the model for Uniform (0, 10):  

 

model { 
  for (i in 1:N){ 
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)    # prior for overall effect 
  tau.theta <- pow(sigma.theta, -2) # define precision 
  sigma.theta ~ dunif (0, 10)       # prior for standard deviation 
  var.theta <- pow(sigma.theta, 2)  # set variance to monitor 
} 

  

2) Cauchy prior on the standard deviation:   
 
model{ 
  for (i in 1:N){ # Likelihood 
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] <- mu.theta + alpha*eps[i] 
    eps[i] ~ dnorm(0, tau.eps) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3) # prior for overall effect 
  # Cauchy prior for the standard deviation 
  alpha ~ dnorm(0, 1) 
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  tau.eps~ dgamma(a, b) 
  a <- 1/2 
  b <- pow(AA, 2)/2 
  AA <- 25 
  sig.eps <- 1/sqrt(tau.eps) 
  sigma.theta <- abs(alpha)/sig.eps 
  var.theta <- pow(sigma.theta, 2) # set variance to monitor 
} 

  

3) Gamma distribution prior for the precision (i.e., 1/among-study variance):   
 
model { 
  for (i in 1:N){ # likelihood 
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)   # prior for the overall effect 
  tau.theta ~ dgamma(0.1, 0.1)     # Gamma prior for the precision 
  sigma.theta <- 1/sqrt(tau.theta) # get the standard deviation 
  var.theta <- pow(sigma.theta, 2) # set variance to monitor 
} 

  

4) Folded-t prior for the standard deviation:   
 
model{ 
  for (i in 1:N){ # likelihood 
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)  # prior for overall effect  
  # folded t prior 
  A <- 5 
  v <- 2 
  B <- 1/(A*A)  
  t.theta ~ dt (0, B, v)  
  sigma.theta <- abs(t.theta) 
  tau.theta <- pow(sigma.theta, -2)  
  # set precision for the likelihood and variance to monitor 
  var.theta <- pow(sigma.theta, 2) 
} 
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5) Folded-normal prior for the standard deviation (Veroniki et al., 2015):   
 
model{ 
  for (i in 1:N){ # likelihood  
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)  # prior for the overall effect 
  sigma.norm ~ dnorm (0, 1)       # folded N prior for standard deviation 
  sigma.theta <- abs(sigma.norm)  # fold prior 
  tau.theta <- pow(sigma.theta, -2) # set precision for the likelihood 
  var.theta <- pow(sigma.theta, 2)  #  set variance to monitor 
} 

  

Performance of the model with different priors 

To analyze the prior’s influence on the posterior results, we chose a small (but 
representative) combination of parameters for the mean number of replicates (݊), the 
number of studies (݇), and the among-study variance (ߪୟ୫୭୬୥ଶ ). We analyzed: 

– mean number of replicates: 5, 20 
– number of studies: 5, 25, 50 
– among-study variance: 0.5, 2, 5 

The ෠ܴ convergence statistic can be used to evaluate convergence of the MCMC chains 
to the posterior distribution of the monitor parameters, in this case, the among-study 
variance. For each prior and combination of simulation factors, we counted the number of 
“bad” ෠ܴ values ( ෠ܴ  1.1) (Gelman & Rubin, 1992). The number of replicated meta-analysis 
in each combination ranged from 1996 to 2000. 
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Figure S12. Number of replicates yielding bad ෠ܴ ( ෠ܴ  1.1) for different combinations of priors, true 
among-study variance, mean number of replicates, and number of studies. 

 

The folded-Cauchy, folded-normal, and Uniform(0, 1) priors had the highest 
number of bad ෠ܴ for the among-study variance (Figure S12), which indicates poor 
convergence to the posterior distribution. For those three priors, poor convergence was 
more common when the number of replicates was low, the true among-study variance was 
high, and the number of studies was high (Figure S12). 

The folded-Cauchy and Uniform(0, 1) priors led to posterior samples that did not 
converge on the true (simulated) among-study variance (Figure S13). The performance of 
the Uniform (0, 10), Uniform (0, 100), Folded-t, and Gamma priors was similar for the 
combinations of simulation factors explored on our simulations (Figure S14). 
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Figure S13. Median of the posterior distribution of the among-study variance for all the different 
priors tested, number of replicates, number of studies, and true among-study variance. A) ݊ = 5; B) 
݊ = 25. The vertical dashed line in each panel indicates the true among-study variance. 
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Figure S14. Median of the posterior distribution of the among-study variance for the four priors with 
the best performance (i.e., Uniform (0, 10), Uniform(0, 100), Gamma, Folded-t), number of 
replicates, number of studies, and true among-study variance. A) ݊ = 5; B) ݊ = 25. The vertical 
dashed line in each panel indicates the true among-study variance. 
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In a closer inspection of the best performing priors under the scenario of low 
number of studies we found that the folded-t and uniform priors converged better to the true 
among-study variance than the gamma prior (Figure S15). The worst performance of the 
gamma prior was under scenarios of low among-study variance (Figure S15). Our initial 
explorations (results not shown) showed that the Gamma prior did not perform well when 
the among-study variance was very low (i.e., ߪୟ୫୭୬୥ଶ = 0.001), but this case is unlikely to 
occur in ecological meta-analyses (Senior et al., 2016). We also tried a folded-t prior with 
parameter expansion to avoid the MCMC chains getting stuck at zero when ߪୟ୫୭୬୥ଶ = 0.001 
(results not shown), but this did not perform better than the uniform prior, and the uniform 
prior led to faster sampling and convergence.  
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Figure S15. Median of the posterior distribution of the among-study variance for the four priors with 
the best performance (i.e., Uniform (0, 10), Uniform (0, 100), Gamma, Folded-t), when the number 
of studies was low (k = 5). A) ݊ = 5; B) ݊ = 25. The vertical dashed line in each panel indicates the 
true among-study variance. 

 

For the combination of simulation factors used in our study, we opted for the 
Uniform(0, 10) prior, because it led to fast sampling and produced good convergence 
statistics (measured with ෠ܴ). 
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Code availability 
This R code is available as an rmarkdown file in the Dryad Data Repository associated 
with this publication: https://doi.org/10.5061/dryad.zw3r22863. The R functions 
presented here were compiled into an R file also available in the Dryad repository. We 
present here a text version for the readers that want to look at the code without 
downloading the data package. 

Literature search in the Web of Science 
Our search in the ISI Web of Science database in March 2017 returned 581 hits. To 
export the data, we used two tab delimited files (for Windows), since the maximum 
amount of data is 500 citations each time. The tab delimited file from WOS was tricky 
to read from R, so we opened both files in Excel and saved them as .csv files for follow 
up analysis. 

Compiling citation data in R 
First, we compiled WOS information from the two files and cleaned weird entries. 
  

library(dplyr) 
 
# load files and keep only columns of interest 
 
wos1 <- read.csv("1_500.csv", header = T, as.is = T) 
wos1 <- wos1[, c("PT", "AU", "TI", "SO", "VL", "IS", "BP",  
    "EP", "DI", "PD", "PY", "AB", "TC", "Z9")] 
 
wos2 <- read.csv("501_581.csv", header = T, as.is = T) 
wos2 <- wos2[, c("PT", "AU", "TI", "SO", "VL", "IS", "BP",  
    "EP", "DI", "PD", "PY", "AB", "TC", "Z9")] 
 



# combine files 
 
wos <- rbind(wos1, wos2) 
 
# rename columns 
 
names(wos) <- c("pub.type", "authors", "title", "pub.name",  
    "vol", "issue", "b.page", "e.page", "doi", "pub.date",  
    "pub.year", "abstract", "wos.citations", "alldb.citations") 
 
# standardize journal names to uppercase 
 
woscaps <- mutate_each(wos, funs(toupper)) 
wos$pub.name <- woscaps$pub.name 
 
# identify weird journal names 
 
name <- which(wos$pub.name == "ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 52") 
name1 <- which(wos$pub.name == "ADVANCES IN ECOLOGICAL RESEARCH, VOL 50: 
ECO-EVOLUTIONARY DYNAMICS") 
name2 <- which(wos$pub.name == "ADVANCES IN ECOLOGICAL RESEARCH, VOL 46: 
GLOBAL CHANGE IN MULTISPECIES SYSTEMS, PT 1") 
 
# change to correct name 
 
wos$pub.name[name] <- "ANNUAL REVIEW OF PHYTOPATHOLOGY" 
wos$pub.name[name1] <- "ADVANCES IN ECOLOGICAL RESEARCH" 
wos$pub.name[name2] <- "ADVANCES IN ECOLOGICAL RESEARCH" 
 
# remove objects not in use 
 
rm(wos1, wos2) 
 
# write file with all citations 
 
write.csv(wos, "WebOfScience_1980-2016.csv", row.names = F) 

  

Abstract screening using metagear 
After compiling all the citations, we screened abstracts using the viewer classification 
tool in the R package metagear (Lajeunesse, 2016). This package requires a file with 
the references, the search has to be independent, and ideally it will contain authors, 
title, doi, abstract. To begin, the function effort_initialize()adds the columns “study_id”, 
“reviewers” and “include”. The abstract_screener() function creates an interactive 
window that allows you to read the abstract and make a decision about including the 
paper (“yes”, “maybe”, “no”). The package adds a new column in the citation data with 



this decision. It can also split the effort among different coauthors; if so, it is necessary 
to include a column with the reviewer/s name and assign reviewer’s effort (see code 
below).   

library(metagear) 
 
# load file 
 
wos <- read.csv("WebOfScience_1980-2016.csv", header = T) 
 
# prepare the file for the screening effort 
 
wos.scan <- effort_initialize(wos) 
 
# save file with the IDs as a backup 
 
write.csv(wos.scan, "wosWithIds.csv") 
 
# randomly distribute screening effort to a team 
 
theTeam <- c("Paula") 
 
theRefs_unscreened <- effort_distribute(wos.scan, reviewers = theTeam,  
    effort = c(100), save_split = T) 
 
# start the abstract viewer to do first pass 
 
abstract_screener("effort_Paula.csv", aReviewer = "Paula",  
    abstractColumnName = "abstract", titleColumnName = "title") 
 
# get the summary of your work 
 
theRefs_screened <- effort_merge() 
sum.scan <- effort_summary(theRefs_screened) 

=== SCREENING EFFORT SUMMARY === 

319 candidate studies identified 234 studies excluded 28 challenging studies needing 
additional screening 

581 TOTAL SCREENED 

=== SCREENING DESIGN SUMMARY === 

  MAYBE  NO YES TOTAL   % 

Paula 28 234 319 581 100 TOTAL 28 234 319 581 100 

  ## Get the pdfs for next screening stage 



We used the PDFs_collect() function to try to get all the PDFs coded as “yes” and 
“maybe” to do the next step of the literature review. When we were unable to find the 
PDF using this tool we searched directly on the web using google scholar, or tried to 
obtain the pdf through our university library or by emailing the corresponding 
author.   

# load revision file 
 
refs <- read.csv("effort_Paula.csv") 
 
# subset by inclusion decision 
 
theRefs.included <- refs[which(refs$INCLUDE == "YES" | refs$INCLUDE ==  
    "MAYBE"), ] 
 
# try to get the pdf 
 
PDFs_collect(theRefs.included, DOIcolumn = "doi", FileNamecolumn = "STUDY
_ID",  
    directory = getwd()) 

As part of the Dryad repository we included the original .txt files from Web of Science. 
The final list of abstract screened and the information for each reference is provided 
in the main data file “Pappalardo_etal_LiteratureReview_Dataset.xlsx”. 

Functions used in the simulation experiment and data analysis 
The functions displayed here are available in the file “Functions_Pappalardo_etal.R” in 
the Dryad data repository https://doi.org/10.5061/dryad.zw3r22863. 

All functions were written by Paula Pappalardo, with assistance from Kiona Ogle, 
Elizabeth Hamman, and Jim Bence. The functions to run a meta-analysis using 
bootstraping in metafor were edited from code provided in the metafor website 
(http://www.metafor-project.org/doku.php/tips:bootstrapping_with_ma). 

  

Functions to simulate datasets: 

  

makeLognormalRow <- function(mu, tau, sigma, mean.n, c.mean) { 
    # Simulates a row of lognormal data representing study i 
     
    # Args: 
     
    # mu: numeric value for the overall effect size 
    # tau: numeric value for the among-study variance 



    # sigma: numeric value for the among-replicates variation 
    # mean.n: numeric value for number of replicates 
    # c.mean: numeric value for the control mean 
     
    # Returns: 
     
    # Dataframe with a row of simulated data for a study in 
    # the meta-analysis 
     
    # Simulate number of replicates using a Poisson 
    # distribution (rescale by 2 to avoid 0 and 1 replicates) 
    pn <- rpois(1, lambda = mean.n - 2) 
    n <- pn + 2 
     
    # calculate a random error based on tau 
    eta <- rnorm(1, mean = 0, sd = sqrt(tau)) 
     
    # simulate raw data for control and treatment 
    c <- rlnorm(n, meanlog = log(c.mean) - (sigma^2)/2,  
        sdlog = sigma) 
    t <- rlnorm(n, meanlog = log(c.mean) - (sigma^2)/2 +  
        mu + eta, sdlog = sigma) 
     
    # calculate log ratio (lnrr) and its variance (var.lnrr) 
    lnrr <- log(mean(t)/mean(c)) 
    var.lnrr <- sd(t)^2/(n * mean(t)^2) + sd(c)^2/(n * mean(c)^2) 
     
    # calculate standard error if running a true Bayesian 
    se.t <- sd(t)/sqrt(n) 
    se.c <- sd(c)/sqrt(n) 
     
    # put results in dataframe 
    results <- data.frame(lnrr = lnrr, var.lnrr = var.lnrr,  
        yt = mean(t), yc = mean(c), nt = n, nc = n, sd.t = sd(t),  
        sd.c = sd(c), se.t = se.t, se.c = se.c) 
    return(results) 
} 
 
makeLognormalDataset <- function(mu, tau, sigma, mean.n,  
    c.mean, k) { 
    # Create datasets for simulations 
     
    # Args: 
     
    # mu: numeric value for the overall effect size 
    # tau: numeric value for the among-study variance 
    # sigma: numeric value for the among-replicates variation 
    # mean.n: numeric value for number of replicates 
    # c.mean: numeric value for the control mean 



    # k: number of studies 
     
    # Returns: 
     
    # list of meta-analytic datasets for all factor 
    # combinations 
     
    datasets <- list()  # empty list to hold results 
     
    # Loop through all combinations of parameters 
    for (m in mu) { 
        for (i in sigma) { 
            for (j in tau) { 
                for (n in mean.n) { 
                  for (z in k) { 
                    # set a name to put things in a list 
                    name <- paste("sigma", i, "tau", j,  
                      "mean.n", n, "k", z, "mu", m, "c.mean",  
                      c.mean, sep = " ") 
                     
                    # make empty list to put each row 
                    rows.list <- list() 
                     
                    # creating a dataset with k= z 
                    for (x in 1:z) { 
                      namek <- paste("k number", x) 
                       
                      # get dataset for this combination 
                      datarow <- makeLognormalRow(sigma = i,  
                        tau = j, mu = m, mean.n = n, c.mean = c.mean) 
                       
                      # put row in list 
                      rows.list[[namek]] <- datarow 
                    } 
                    df.results <- do.call(rbind, rows.list) 
                    df.results$true.mu <- m 
                    df.results$true.tau2 <- j 
                    df.results$mean.n <- n 
                    df.results$k <- z 
                    df.results$sigma <- i 
                    df.results$c.mean <- c.mean 
                    row.names(df.results) <- NULL 
                    datasets[[name]] <- df.results 
                  } 
                } 
            } 
        } 
    } 
    # return list with datasets 



    return(datasets) 
} 

  

Functions to run meta-analysis with traditional methods: 

  

runMetafor <- function(mydf, tau.method, ci) { 
    # Run a weighted random-effects meta-analysis with metafor 
     
    # Args: 
     
    # tau.method: defines the method to estimate the among-study variance 
    # ci: T to run Knapp-Hartung CI, F for default z-distribution CI 
     
    # Returns: 
     
    # Summary results from the meta-analysis 
     
    library(metafor) 
     
    # run meta-analysis 
    res <- try(rma(lnrr, var.lnrr, data = mydf, knha = ci,  
        method = tau.method, control = list(maxiter = 200))) 
     
    # check if metafor gave an error 
    error <- class(res)[1] 
     
    # prepare dataframe in case of error 
    if (error == "try-error") { 
         
        # make dataframe to hold the data if there was an error 
        res2 <- data.frame(error = 1) 
         
        # return dataframe 
        return(res2) 
         
    } else { 
        # get confidence intervals for tau 
        res.tau <- confint(res) 
         
        # extract CI's for tau 
        tau.ci.lb <- res.tau$random["tau^2", "ci.lb"] 
        tau.ci.ub <- res.tau$random["tau^2", "ci.ub"] 
         
        # make dataframe in case there is no error 
        res2 <- data.frame(obs.mu = res$b, mu.ci.lb = res$ci.lb,  
            mu.ci.ub = res$ci.ub, se = res$se, obs.tau = res$tau2,  



            tau.ci.lb, tau.ci.ub, true.mu = mydf$true.mu[1],  
            sigma = mydf$sigma[1], true.tau = mydf$true.tau2[1],  
            k = mydf$k[1], mean.n = mydf$mean.n[1], error = 0,  
            i2 = res$I2) 
         
        # calculate bias for overall effect and tau 
        res2$bias.eff <- res2$obs.mu - res2$true.mu 
        res2$bias.tau <- res2$obs.tau - res2$true.tau 
         
        # calculate coverage by comparing with simulated values 
        coverage.mu <- ifelse(res2$mu.ci.lb <= res2$true.mu &  
            res2$mu.ci.ub >= res2$true.mu, 1, 0) 
        coverage.tau <- ifelse(res2$tau.ci.lb <= res2$true.tau &  
            res2$tau.ci.ub >= res2$true.tau, 1, 0) 
         
        # add coverage to the final dataframe 
        res2$cov.mu <- coverage.mu 
        res2$cov.tau <- coverage.tau 
         
        # calculate the width of the CI 
        res2$mu.width <- res2$mu.ci.ub - res2$mu.ci.lb 
        res2$tau.width <- res2$tau.ci.ub - res2$tau.ci.lb 
         
        # return results 
        print("meta-analysis with metafor done") 
        return(res2) 
    } 
} 
 
runMetafor_bootfunction <- function(mydf, indices) { 
    # Function to bootstrap a meta-analysis with metafor 
     
    # Args: 
     
    # mydf: dataset to analyze 
    # indices: vector of indices which define the bootstrap sample 
     
    # Returns: 
     
    # Summary results from the meta-analysis 
     
    library(metafor) 
     
    res <- try(rma(lnrr, var.lnrr, data = mydf, method = "REML",  
        subset = indices), silent = TRUE) 
    if (is.element("try-error", class(res))) { 
        c(NA) 
    } else { 
        c(coef(res), res$tau2) 



    } 
} 
 
bootMetafor <- function(mydf) { 
    # Bootstrap the mean effect and associated CI from a meta-analysis 
     
    # Args: 

    # mydf: dataset to analyze 
     
    # Returns: Summary results from the meta-analysis 
     
    library(boot) 
    library(metafor) 
     
    # function for bootstrapping CI's 
    res.boot <- try(boot(mydf, runMetafor_bootfunction,  
        R = 5000)) 
     
    # use try in case function fails 
    error.1 <- class(res.boot) 
    if (error.1 == "try-error") { 
        res.error <- data.frame(obs.mu = NA, mu.ci.lb = NA,  
            mu.ci.ub = NA) 
        return(res.error) 
         
    } else { 
        # run the boot.ci function to get non-parametric bootstrap CI's 
        res.muci <- try(boot.ci(res.boot, index = 1)) 
        error.2 <- class(res.muci) 
         
        if (error.2 == "try-error") { 
            res.error <- data.frame(obs.mu = NA, mu.ci.lb = NA,  
                mu.ci.ub = NA) 
            return(res.error) 
             
        } else { 
            # select the bias corrected non parametric CIs 
            mu.ci.lb <- res.muci$bca[4] 
            mu.ci.ub <- res.muci$bca[5] 
            obs.mu <- res.muci$t0[1] 
             
            # make dataframe to hold answers in case there is no 
            # error 
            res1 <- data.frame(obs.mu, mu.ci.lb, mu.ci.ub,  
                true.mu = mydf$true.mu[1], sigma = mydf$sigma[1],  
                true.tau = mydf$true.tau2[1], k = mydf$k[1],  
                mean.n = mydf$mean.n[1], error = 0, i2 = res.boot$t0[5]) 
             



            # calculate bias for overall effect and tau 
            res1$bias.eff <- res1$obs.mu - res1$true.mu 
             
            # calculate coverage by comparing the metafor CIs with 
            # the real answer 
             
            coverage.mu <- ifelse(res1$mu.ci.lb <= res1$true.mu &  
                res1$mu.ci.ub >= res1$true.mu, 1, 0) 
             
            # add coverage to final dataframe 
            res1$cov.mu <- coverage.mu 
             
            # calculate the width of the CI 
            res1$mu.width <- res1$mu.ci.ub - res1$mu.ci.lb 
             
            print("weighted meta-analysis boostrap CI with Metafor") 
            return(res1) 
        } 
    } 
} 
 
bootMetaforTau <- function(mydf) { 
    # Bootstrap the among-study variance and associated CI 
         
    # Args: 

    # mydf: dataset to analyze 
     
    # Returns: Summary results from the meta-analysis 
     
    # function for bootstrapping CI's 
    res.boot <- try(boot(mydf, runMetafor_bootfunction,  
        R = 2000)) 
     
    # use try in case function fails 
    error.1 <- class(res.boot) 
    if (error.1 == "try-error") { 
        res.error <- data.frame(obs.tau = NA, tau.ci.lb = NA,  
            tau.ci.ub = NA) 
        return(res.error) 
    } else { 
         
        # run the boot.ci function to get non-parametric bootstrap CI's 
        res.tauci <- try(boot.ci(res.boot, index = 2)) 
        res.muci <- try(boot.ci(res.boot, index = 1)) 
        error.2 <- class(res.tauci) 
        error.3 <- class(res.muci) 
         
        if (error.2 == "try-error" | error.3 == "try-error") { 



            res.error <- data.frame(obs.tau = NA, tau.ci.lb = NA,  
                tau.ci.ub = NA) 
            return(res.error) 
             
        } else { 
            tau.ci.lb <- res.tauci$bca[4] 
            tau.ci.ub <- res.tauci$bca[5] 
            obs.tau <- res.tauci$t0[1] 
             
            mu.ci.lb <- res.muci$bca[4] 
            mu.ci.ub <- res.muci$bca[5] 
            obs.mu <- res.muci$t0[1] 
        } 
         
        # make dataframe to hold answers in case there is no 
        # error 
        res1 <- data.frame(obs.mu, mu.ci.lb, mu.ci.ub, obs.tau,  
            tau.ci.lb, tau.ci.ub, true.mu = mydf$true.mu[1],  
            sigma = mydf$sigma[1], true.tau = mydf$true.tau2[1],  
            k = mydf$k[1], mean.n = mydf$mean.n[1], error = 0,  
            i2 = res.boot$t0[5]) 
         
        # calculate bias for overall effect and tau 
        res1$bias.eff <- res1$obs.mu - res1$true.mu 
        res1$bias.tau <- res1$obs.tau - res1$true.tau 
         
        # calculate coverage by comparing the metafor CIs with 
        # the real answer 
        coverage.mu <- ifelse(res1$mu.ci.lb <= res1$true.mu &  
            res1$mu.ci.ub >= res1$true.mu, 1, 0) 
        coverage.tau <- ifelse(res1$tau.ci.lb <= res1$true.tau &  
            res1$tau.ci.ub >= res1$true.tau, 1, 0) 
         
        # add coverage to final dataframe 
        res1$cov.mu <- coverage.mu 
        res1$cov.tau <- coverage.tau 
         
        # calculate the width of the CI 
        res1$mu.width <- res1$mu.ci.ub - res1$mu.ci.lb 
        res1$tau.width <- res1$tau.ci.ub - res1$tau.ci.lb 
         
        print("weighted meta-analysis boostrap CI for tau2 with Metafor") 
        return(res1) 
    } 
} 

  

Functions to calculate confidence intervals for data analysis: 



  

# load libraries we need 
 
library(binom) 
 
# Confidence intervals for coverage (binomial variable) 
 
bi.95.l <- function(vec1) { 
    vec <- vec1[!is.na(vec1)] 
    s <- length(which(vec == 1)) 
    runs <- length(vec) 
    res <- binom.confint(x = s, n = runs, conf.level = 0.95,  
        method = c("wilson")) 
    res.low <- res$mean - res$lower 
    return(res.low) 
} 
 
bi.95.u <- function(vec1) { 
    vec <- vec1[!is.na(vec1)] 
    s <- length(which(vec == 1)) 
    runs <- length(vec) 
    res <- binom.confint(x = s, n = runs, conf.level = 0.95,  
        method = c("wilson")) 
    res.up <- res$upper - res$mean 
    return(res.up) 
} 
 
# Confidence intervals for bias 
 
t.95CI <- function(vec) { 
    x <- vec[!is.na(vec)] 
    n <- length(x) 
    t <- qt(0.975, df = n - 1) 
    se <- sd(x)/sqrt(n) 
    ci <- t * se 
    return(ci) 
} 
 
z.95CI <- function(vec) { 
    x <- vec[!is.na(vec)] 
    n <- length(x) 
    se <- sd(x)/sqrt(n) 
    z <- qnorm(0.975) * se 
    ci <- z * se 
    return(ci) 
} 

  



Functions to run Hybrid Bayesian meta-analysis: 

  

# load libraries we need 
 
library(rjags) 
library(runjags) 
library(coda) 
 
make_JAGS_summary <- function(sims, sigma, true.mu, true.tau,  
    k, mean.n) { 
    # Summarize results from the JAGS function 
     
    # Args: 
     
    # sims: output of run.jags() function 
    # true.tau: numeric value for the true among-study variance 
    # true.mu: numeric value for the true overall effect 
    # sigma: numeric value for the among-replicates variation 
    # mean.n: numeric value for mean number of replicates 
    # k: numeric value for the number of setudies 
     
    # Returns: 
     
    # Dataframe with the meta-analysis results 
     
    # Get summary of the results 
     
    summ <- sims$summaries 
    summ2 <- sims$summary 
    obs.mean.mu <- summ["mu.theta", "Mean"] 
    obs.mean.tau <- summ["var.theta", "Mean"] 
    obs.median.mu <- summ["mu.theta", "Median"] 
    obs.median.tau <- summ["var.theta", "Median"] 
    obs.sd.mu <- summ["mu.theta", "SD"] 
    obs.sd.tau <- summ["var.theta", "SD"] 
    n.burnin <- sims$burnin 
    n.iter <- sims$sample 
    n.chains <- summ2[["nchain"]] 
     
    # Asses convergence of chains (it needs to be lower than 1.1) 
     
    Rhat.mu <- summ["mu.theta", "psrf"] 
    Rhat.tau2 <- summ["var.theta", "psrf"] 
     
    # get samples 
    mcmcsamp <- sims$mcmc 
    mcmcmat <- do.call("rbind", mcmcsamp) 



     
    # Convert simulations to MCMC object 
    mcmc.sims <- as.mcmc(mcmcmat) 
     
    # Calculate 95% high density intervals 
    hdi.sims <- HPDinterval(mcmc.sims, prob = 0.95) 
     
    # HDI for the overall effect 
    obs.mu.hdiL <- hdi.sims["mu.theta", "lower"] 
    obs.mu.hdiU <- hdi.sims["mu.theta", "upper"] 
     
    # width of the high density interval for the overall effect 
    mu.width <- obs.mu.hdiU - obs.mu.hdiL 
     
    # HDI for the among studies variance 
    obs.tau.hdiL <- hdi.sims["var.theta", "lower"] 
    obs.tau.hdiU <- hdi.sims["var.theta", "upper"] 
     
    # width of the high density interval for the among-study variance 
    tau.width <- obs.tau.hdiU - obs.tau.hdiL 
     
    # calculate coverage for the overall effect and tau 
    cov.mu <- ifelse(obs.mu.hdiL <= true.mu & obs.mu.hdiU >=  
        true.mu, 1, 0) 
    cov.tau <- ifelse(obs.tau.hdiL <= true.tau & obs.tau.hdiU >=  
        true.tau, 1, 0) 
     
    # add bias estimation 
    bias.mean.eff <- obs.mean.mu - true.mu 
    bias.mean.tau <- obs.mean.tau - true.tau 
    bias.median.eff <- obs.median.mu - true.mu 
    bias.median.tau <- obs.median.tau - true.tau 
     
    # create dataframe with all the output we want 
    bayes.results <- data.frame(true.mu, sigma, true.tau,  
        k, mean.n, obs.mean.mu, obs.median.mu, obs.sd.mu,  
        obs.mu.hdiL, obs.mu.hdiU, obs.mean.tau, obs.median.tau,  
        obs.tau.hdiL, obs.tau.hdiU, obs.sd.tau, bias.mean.eff,  
        bias.mean.tau, bias.median.eff, bias.median.tau,  
        n.burnin, n.iter, n.chains, Rhat.mu, Rhat.tau2,  
        cov.mu, cov.tau, mu.width, tau.width) 
     
    # return data 
    return(bayes.results) 
} 
 
#-----------------Hybrid Bayesian model with uniform prior -------------- 
modelString = "  
model{ 



for (i in 1:N){ 
y[i] ~ dnorm (theta[i], tau.y[i]) 
theta[i] ~ dnorm (mu.theta, tau.theta) 
} 
# Setting priors 
mu.theta ~ dnorm (0.0, 1.0E-3)   # prior for Overall effect 
tau.theta <- pow(sigma.theta, -2)     # define precision 
sigma.theta ~ dunif (0, 10)              # prior for standard deviation 
var.theta <- pow(sigma.theta, 2)  # set variance to monitor 
} 
" 
# write model file: 
writeLines(modelString, con = "modelHalfBayes_uniform_JAGS.txt") 
 
runHalfBayes_uniform_JAGS <- function(mydf) { 
    # runs Hybrid Bayesian meta-analysis with uniform prior 
     
    # Args: 
    # mydf: dataset with columns eff.size and var 
     
    # Returns: One line dataframe with the meta-analysis results 
     
    # Organize data we need 
    mydf <- mydf[complete.cases(mydf), ] 
    N <- nrow(mydf)  # number of studies 
    y <- mydf$lnrr  # the observed effect sizes 
    tau.y <- 1/mydf$var.lnrr  # the variance of the effect sizes 
    muinit <- mean(mydf$lnrr) 
    sdinit <- sd(mydf$lnrr) 
     
    # Specify data in a list form 
    datalist <- list(N = N, y = y, tau.y = tau.y) 
     
    # It is highly recommend to specify the initial values 
    # for the chains 
    chain1 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        sigma.theta = runif(1, 0.8 * sdinit, 1.2 * sdinit)) 
    chain2 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        sigma.theta = runif(1, 0.8 * sdinit, 1.2 * sdinit)) 
    chain3 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        sigma.theta = runif(1, 0.8 * sdinit, 1.2 * sdinit)) 
    initslist <- list(chain1, chain2, chain3) 
     
    # Start the MCMC simulation: 
    sims <- run.jags(data = datalist, inits = initslist,  
        model = "modelHalfBayes_uniform_JAGS.txt", n.chains = 3,  
        burnin = 1e+05, sample = 1e+05, monitor = c("mu.theta",  
            "var.theta"), method = "rjags") 
     



     
    # Make dataframe with the results of the meta-analysis 
    results <- make_JAGS_summary(sims, sigma = mydf$sigma[1],  
        true.mu = mydf$true.mu[1], true.tau = mydf$true.tau2[1],  
        k = mydf$k[1], mean.n = mydf$mean.n[1]) 
     
    # Return dataframe and print 'done' 
    print("half bayesian meta-analysis with uniform prior done with JAGS"
) 
    return(results) 
     
    # remove things not in use 
    rm(mydf, N, y, tau.y, muinit, sdinit, data, chain1,  
        chain2, chain3, inits, sims, results) 
} 
 
 
# ----------------------ALL HYBRID Bayesian MODELS---------------------- 
 
# -------------------Folded N 
 
modelString = " 
model{ 
  for (i in 1:N){ # likelihood  
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)  # prior for overall effect 
  sigma.norm ~ dnorm (0, 1) # folded N prior for standard deviation 
  sigma.theta <- abs(sigma.norm) # here I folded it 
  tau.theta <- pow(sigma.theta, -2) # set precision for the likelihood 
  var.theta <- pow(sigma.theta, 2) #  set variance to monitor 
} 
" 
# some temporary filename: 
writeLines(modelString, con = "modelHalfBayes_folded_N.txt") 
 
# Function to run half bayesian analysis with folded N prior 

 
runHalfBayes_folded_N <- function(mydf) { 
    # runs Hybrid Bayesian meta-analysis with folded N prior 
     
    # Args: 
     
    # mydf: dataset with columns eff.size and var 
     
    # Returns: One line dataframe with the meta-analysis results 



     
    # Organize data we need 
    mydf <- mydf[complete.cases(mydf), ] 
    N <- nrow(mydf)  # number of studies 
    y <- mydf$lnrr  # the observed effect sizes 
    tau.y <- 1/mydf$var.lnrr  # the variance of the effect sizes 
    muinit <- mean(mydf$lnrr) 
    sdinit <- sd(mydf$lnrr) 
     
    # Specify data in a list form 
    datalist <- list(N = N, y = y, tau.y = tau.y) 
     
    # It is highly recommend to specify the initial values 
    # for the chains 
    chain1 <- list(theta = rnorm(N, muinit, sdinit), mu.theta = rnorm(1,  
        muinit, sdinit), sigma.norm = rnorm(1, 0, sdinit)) 
    chain2 <- list(theta = rnorm(N, muinit, sdinit), mu.theta = rnorm(1,  
        muinit, sdinit), sigma.norm = rnorm(1, 0, sdinit)) 
    chain3 <- list(theta = rnorm(N, muinit, sdinit), mu.theta = rnorm(1,  
        muinit, sdinit), sigma.norm = rnorm(1, 0, sdinit)) 
    initslist <- list(chain1, chain2, chain3) 
     
    # Start the MCMC simulation: 
    sims <- run.jags(data = datalist, inits = initslist,  
        model = "modelHalfBayes_folded_N.txt", n.chains = 3,  
        burnin = 1e+05, sample = 1e+05, monitor = c("mu.theta",  
            "var.theta"), method = "rjags") 
     
    # Make dataframe with the results of the meta-analysis 
    results <- make_JAGS_summary(sims, sigma = mydf$sigma[1],  
        true.mu = mydf$true.mu[1], true.tau = mydf$true.tau2[1],  
        k = mydf$k[1], mean.n = mydf$mean.n[1]) 
     
    # Return dataframe and print 'done' 
    print("half bayesian meta-analysis with folded N prior done with JAGS
") 
    return(results) 
     
    # remove things not in use 
    rm(mydf, N, y, tau.y, muinit, sdinit, data, chain1,  
        chain2, chain3, inits, sims, results) 
} 
 
# -------------------Cauchy 
 
modelString = " 
model{ 
  for (i in 1:N){ # Likelihood 
    y[i] ~ dnorm (theta[i], tau.y[i]) 



    theta[i] <- mu.theta + alpha*eps[i] 
    eps[i] ~ dnorm(0, tau.eps) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)   # prior for Overall effect 
  # Cauchy prior for the standard deviation 
  alpha ~ dnorm(0, 1) 
  tau.eps~ dgamma(a, b) 
  a <- 1/2 
  b <- pow(AA, 2)/2 
  AA <- 25 
  sig.eps <- 1/sqrt(tau.eps) 
  sigma.theta <- abs(alpha)/sig.eps 
  var.theta <- pow(sigma.theta, 2) # set variance to monitor 
} 
" 
# some temporary filename: 
writeLines(modelString, con = "modelHalfBayes_Cauchy.txt") 
 
# Function to run half bayesian analysis with uniform prior 

 
runHalfBayes_cauchy <- function(mydf) { 
    # runs Hybrid Bayesian meta-analysis with Cauchy prior 
     
    # Args: 
     
    # mydf: dataset with columns eff.size and var 
     
    # Returns: One line dataframe with the meta-analysis results 
     
    # Organize data we need 
    mydf <- mydf[complete.cases(mydf), ] 
    N <- nrow(mydf)  # number of studies 
    y <- mydf$lnrr  # the observed effect sizes 
    tau.y <- 1/mydf$var.lnrr  # the variance of the effect sizes 
    muinit <- mean(mydf$lnrr) 
    sdinit <- sd(mydf$lnrr) 
     
    # Specify data in a list form 
    datalist <- list(N = N, y = y, tau.y = tau.y) 
     
    # It is highly recommend to specify the initial values 
    # for the chains 
    chain1 <- list(alpha = rnorm(1), tau.eps = runif(1),  
        mu.theta = rnorm(1, muinit, sdinit)) 
    chain2 <- list(alpha = rnorm(1), tau.eps = runif(1),  
        mu.theta = rnorm(1, muinit, sdinit)) 
    chain3 <- list(alpha = rnorm(1), tau.eps = runif(1),  



        mu.theta = rnorm(1, muinit, sdinit)) 
    initslist <- list(chain1, chain2, chain3) 
     
    # Start the MCMC simulation: 
    sims <- run.jags(data = datalist, inits = initslist,  
        model = "modelHalfBayes_Cauchy.txt", monitor = c("mu.theta",  
            "var.theta"), n.chains = 3, method = "rjags",  
        burnin = 1e+05, sample = 1e+05) 
     
    # Make dataframe with the results of the meta-analyis 
    results <- make_JAGS_summary(sims, sigma = mydf$sigma[1],  
        true.mu = mydf$true.mu[1], true.tau = mydf$true.tau2[1],  
        k = mydf$k[1], mean.n = mydf$mean.n[1]) 
     
    # Return dataframe and print 'done' 
    print("half Bayesian meta-analysis with Cauchy prior done") 
    return(results) 
     
    # remove things not in use 
    rm(mydf, N, y, tau.y, muinit, sdinit, data, chain1,  
        chain2, chain3, inits, sims, results) 
} 
 
# -------------------Uniform (0, 10) 
 
modelString = " 
model { 
  for (i in 1:N){ 
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)   # prior for Overall effect 
  tau.theta <- pow(sigma.theta, -2)     # define precision 
  sigma.theta ~ dunif (0, 10)              # prior for standard deviation 
  var.theta <- pow(sigma.theta, 2)  # set variance to monitor 
} 
" 
# some temporary filename: 
writeLines(modelString, con = "modelHalfBayes_uniform.txt") 
 
# -------------------Uniform (0, 1) 
 
modelString = " 
model { 
  for (i in 1:N){ 
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 



  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)   # prior for Overall effect 
  tau.theta <- pow(sigma.theta, -2)     # define precision 
  sigma.theta ~ dunif (0, 1)              # prior for standard deviation 
  var.theta <- pow(sigma.theta, 2)  # set variance to monitor 
} 
" 
# some temporary filename: 
writeLines(modelString, con = "modelHalfBayes_uniform1.txt") 
 
# ------------------Uniform (0, 100) 
modelString = " 
model { 
  for (i in 1:N){ 
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)   # prior for Overall effect 
  tau.theta <- pow(sigma.theta, -2)     # define precision 
  sigma.theta ~ dunif (0, 100)              # prior for standard deviatio
n 
  var.theta <- pow(sigma.theta, 2)  # set variance to monitor 
} 
" 
# some temporary filename: 
writeLines(modelString, con = "modelHalfBayes_uniform100.txt") 
 
# Function to run half bayesian analysis with uniform prior 

 
runHalfBayes_uniform <- function(mydf, mymodel) { 
    # runs Hybrid Bayesian meta-analysis with Uniform prior 
     
    # Args: 

    # mydf: dataset with columns eff.size and var 
    # mymodel: name of jags model to use 
     
    # Returns: One line dataframe with the meta-analysis results 
     
    # Organize data we need 
    mydf <- mydf[complete.cases(mydf), ] 
    N <- nrow(mydf)  # number of studies 
    y <- mydf$lnrr  # the observed effect sizes 
    tau.y <- 1/mydf$var.lnrr  # the variance of the effect sizes 
    muinit <- mean(mydf$lnrr) 
    sdinit <- sd(mydf$lnrr) 
     
    # Specify data in a list form 



    datalist <- list(N = N, y = y, tau.y = tau.y) 
     
    # It is highly recommend to specify the initial values 
    # for the chains 
    chain1 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        sigma.theta = runif(1, 0.8 * sdinit, 1.2 * sdinit)) 
    chain2 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        sigma.theta = runif(1, 0.8 * sdinit, 1.2 * sdinit)) 
    chain3 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        sigma.theta = runif(1, 0.8 * sdinit, 1.2 * sdinit)) 
    initslist <- list(chain1, chain2, chain3) 
     
    # Start the MCMC simulation: 
    sims <- run.jags(data = datalist, inits = initslist,  
        model = mymodel, monitor = c("mu.theta", "var.theta"),  
        method = "rjags", n.chains = 3, burnin = 1e+05,  
        sample = 1e+05) 
     
    # Make dataframe with the results of the meta-analyis 
    results <- make_JAGS_summary(sims, sigma = mydf$sigma[1],  
        true.mu = mydf$true.mu[1], true.tau = mydf$true.tau2[1],  
        k = mydf$k[1], mean.n = mydf$mean.n[1]) 
     
    # Return dataframe and print 'done' 
    print("half bayesian meta-analysis with uniform prior done") 
    return(results) 
     
    # remove things not in use 
    rm(mydf, N, y, var, muinit, sdinit, data, chain1, chain2,  
        chain3, inits, sims, results) 
} 
 
runHalfBayes_uniform1 <- function(mydf, mymodel) { 
    # runs Hybrid Bayesian meta-analysis with Uniform(0, 1) 
     
    # Args: 

    # mydf: dataset with columns eff.size and var 
    # mymodel: name of jags model to use 
     
    # Returns: One line dataframe with the meta-analysis 
    # results 
     
    # Organize data we need 
    mydf <- mydf[complete.cases(mydf), ] 
    N <- nrow(mydf)  # number of studies 
    y <- mydf$lnrr  # the observed effect sizes 
    tau.y <- 1/mydf$var.lnrr  # the variance of the effect sizes 
    muinit <- mean(mydf$lnrr) 



    sdinit <- sd(mydf$lnrr) 
     
    # Specify data in a list form 
    datalist <- list(N = N, y = y, tau.y = tau.y) 
     
    # It is highly recommend to specify the initial values 
    # for the chains 
    chain1 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        sigma.theta = runif(1, 0, 1)) 
    chain2 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        sigma.theta = runif(1, 0, 1)) 
    chain3 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        sigma.theta = runif(1, 0, 1)) 
    initslist <- list(chain1, chain2, chain3) 
     
    # Start the MCMC simulation: 
    sims <- run.jags(data = datalist, inits = initslist,  
        model = mymodel, monitor = c("mu.theta", "var.theta"),  
        method = "rjags", n.chains = 3, burnin = 1e+05,  
        sample = 1e+05) 
     
    # Make dataframe with the results of the meta-analyis 
    results <- make_JAGS_summary(sims, sigma = mydf$sigma[1],  
        true.mu = mydf$true.mu[1], true.tau = mydf$true.tau2[1],  
        k = mydf$k[1], mean.n = mydf$mean.n[1]) 
     
    # Return dataframe and print 'done' 
    print("half bayesian meta-analysis with uniform prior (0, 1) done") 
    return(results) 
     
    # remove things not in use 
    rm(mydf, N, y, tau.y, muinit, sdinit, data, chain1,  
        chain2, chain3, inits, sims, results) 
} 
 
# -------------------Gamma 
 
modelString = " 
model { 
  for (i in 1:N){ # likelihood 
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)  # Prior for the overall effect 
  tau.theta ~ dgamma(0.1, 0.1)    # Gamma prior for the precision 
  sigma.theta <- 1/sqrt(tau.theta) # get the standard deviation 
  var.theta <- pow(sigma.theta, 2)  # set variance to monitor 
} 



" 
# some temporary filename: 
writeLines(modelString, con = "modelHalfBayes_Gamma.txt") 
 
# Function to run half bayesian analysis with gamma prior 

 
runHalfBayes_gamma <- function(mydf) { 
    # runs Hybrid Bayesian meta-analysis with Gamma prior 
     
    # Args: mydf: dataset with columns eff.size and var 
     
    # Returns: One line dataframe with the meta-analysis results 
     
    # Organize data we need 
    mydf <- mydf[complete.cases(mydf), ] 
    N <- nrow(mydf)  # number of studies 
    y <- mydf$lnrr  # the observed effect sizes 
    tau.y <- 1/mydf$var.lnrr  # the variance of the effect sizes 
    muinit <- mean(mydf$lnrr) 
    sdinit <- sd(mydf$lnrr) 
    tauinit <- 1/sdinit^2 
     
    # Specify data in a list form 
    datalist <- list(N = N, y = y, tau.y = tau.y) 
     
    # It is highly recommend to specify the initial values 
    # for the chains 
    chain1 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        tau.theta = runif(1, 0.8 * tauinit, 1.2 * tauinit)) 
    chain2 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        tau.theta = runif(1, 0.8 * tauinit, 1.2 * tauinit)) 
    chain3 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        tau.theta = runif(1, 0.8 * tauinit, 1.2 * tauinit)) 
    initslist <- list(chain1, chain2, chain3) 
     
    # Start the MCMC simulation: 
    gamma <- run.jags(data = datalist, inits = initslist,  
        model = "modelHalfBayes_Gamma.txt", monitor = c("mu.theta",  
            "var.theta"), n.chains = 3, burnin = 1e+05,  
        sample = 1e+05, method = "rjags") 
     
    # Make dataframe with the results of the meta-analysis 
    results <- make_JAGS_summary(gamma, sigma = mydf$sigma[1],  
        true.mu = mydf$true.mu[1], true.tau = mydf$true.tau2[1],  
        k = mydf$k[1], mean.n = mydf$mean.n[1]) 
     
    # Return dataframe and print 'done' 
    print("half bayesian meta-analysis with gamma prior done") 



    return(results) 
     
    # remove things not in use 
    rm(mydf, N, y, tau.y, muinit, sdinit, data, chain1,  
        chain2, chain3, inits, sims, results) 
} 
 
# -------------------folded-t- 
 
modelString = " 
model{ 
  for (i in 1:N){ # likelihood 
    y[i] ~ dnorm (theta[i], tau.y[i]) 
    theta[i] ~ dnorm (mu.theta, tau.theta) 
  } 
  # Setting priors 
  mu.theta ~ dnorm (0.0, 1.0E-3)  # Overall effect prior 
  # folded t prior 
  A <- 5 
  v <- 2 
  B <- 1/(A*A)  
  t.theta ~ dt (0, B, v)  
  sigma.theta <- abs(t.theta) 
  tau.theta <- pow(sigma.theta, -2)  
  # set precision for the likelihood and variance to monitor 
  var.theta <- pow(sigma.theta, 2) 
} 
" 
# write model file: 
writeLines(modelString, con = "modelHalfBayes_folded_t.txt") 
 
# Function to run bayesian analysis with Folded t prior 

 
runHalfBayes_folded_t <- function(mydf) { 
    # runs Hybrid Bayesian meta-analysis with Folded t prior 
     
    # Args: 

    # mydf: dataset with columns eff.size and var 
     
    # Returns: One line dataframe with the meta-analysis results 
     
    # Organize data we need 
    mydf <- mydf[complete.cases(mydf), ] 
    N <- nrow(mydf)  # number of studies 
    y <- mydf$lnrr  # the observed effect sizes 
    tau.y <- 1/mydf$var.lnrr  # the variance of the effect sizes 
    muinit <- mean(mydf$lnrr) 
    sdinit <- sd(mydf$lnrr) 



     
    # Specify data in a list form 
    datalist <- list(N = N, y = y, tau.y = tau.y) 
     
    # It is highly recommend to specify the initial values 
    # for the chains 
    chain1 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        t.theta = runif(1, 0.8 * sdinit, 1.2 * sdinit)) 
    chain2 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        t.theta = runif(1, 0.8 * sdinit, 1.2 * sdinit)) 
    chain3 <- list(mu.theta = rnorm(1, muinit, sdinit),  
        t.theta = runif(1, 0.8 * sdinit, 1.2 * sdinit)) 
    initslist <- list(chain1, chain2, chain3) 
     
    # Start the MCMC simulation: 
    sims <- run.jags(data = datalist, inits = initslist,  
        model = "modelHalfBayes_folded_t.txt", monitor = c("mu.theta",  
            "var.theta"), n.chains = 3, burnin = 1e+05,  
        sample = 1e+05, method = "rjags") 
     
    # Make dataframe with the results of the meta-analysis 
    results <- make_JAGS_summary(sims, sigma = mydf$sigma[1],  
        true.mu = mydf$true.mu[1], true.tau = mydf$true.tau2[1],  
        k = mydf$k[1], mean.n = mydf$mean.n[1]) 
     
    # Return dataframe and print 'done' 
    print("half bayesian meta-analysis with folded t prior done") 
    return(results) 
     
    # remove things not in use 
    rm(mydf, N, y, var, A, k, muinit, sdinit, data, chain1,  
        chain2, chain3, inits, sims, results) 
     
} 

  

Extra function used for plots, not written by the authors, available from 
https://rpubs.com/sjackman/grid_arrange_shared_legend 

  

# This function will allow for multiple plots that shared a legend 
 
grid_arrange_shared_legend <- function(..., ncol = length(list(...)),  
    nrow = 1, position = c("bottom", "right")) { 
     
    plots <- list(...) 
    position <- match.arg(position) 
    g <- ggplotGrob(plots[[1]] + theme(legend.position = position))$grobs 



    legend <- g[[which(sapply(g, function(x) x$name) ==  
        "guide-box")]] 
    lheight <- sum(legend$height) 
    lwidth <- sum(legend$width) 
    gl <- lapply(plots, function(x) x + theme(legend.position = "none")) 
    gl <- c(gl, ncol = ncol, nrow = nrow) 
     
    combined <- switch(position, bottom = arrangeGrob(do.call(arrangeGrob
,  
        gl), legend, ncol = 1, heights = unit.c(unit(1,  
        "npc") - lheight, lheight)), right = arrangeGrob(do.call(arrangeG
rob,  
        gl), legend, ncol = 2, widths = unit.c(unit(1, "npc") -  
        lwidth, lwidth))) 
     
    grid.newpage() 
    grid.draw(combined) 
     
    # return gtable invisibly 
    invisible(combined) 
     
} 

Simulation experiments 

Simulating datasets 
  

# load libraries for parallel computing 
library(doParallel) 
library(foreach) 
 
# source functions we need 
source("/home/pappalardop/bayes2/Functions_Pappalardo_etal.R") 
 
# how many replicates 
replicates <- 2000 
 
# set up cluster 
cl = makeCluster(4, type = "FORK") 
registerDoParallel(cl) 
 
# Divide replicates among cores 
x <- foreach(rep = 1:replicates, .combine = rbind) %dopar%  
    { 
        # Define parameters 
         



        # AMONG-STUDY VARIANCE (tau2) 
        tau <- c(0.1, 0.25, 0.5, 1, 2, 5) 
         
        # OVERALL EFFECT 
        mu <- c(0.5) 
         
        # NUMBER OF STUDIES in the meta-analysis 
        k <- c(5, 10, 15, 25, 35, 50) 
         
        # NUMBER OF REPLICATES 
        mean.n <- c(3, 5, 10, 15, 20, 30) 
         
        # WITHIN-STUDY (sigma2) 
        sigma <- c(1) 
         
        # define control mean 
        c.mean <- 1 
         
        # create dataset 
        datasets <- makeLognormalDataset(mu = mu, tau = tau,  
            k = k, sigma = sigma, c.mean = c.mean, mean.n = mean.n) 
         
        # save dataset 
        save(datasets, file = paste("/home/pappalardop/bayes2/datasets/ln
rrDatasets_rep",  
            rep, sep = "")) 
    } 
 
stopCluster(cl) 

 

Running meta-analysis 

The simulation experiment was run on a high performing cluster using parallel 
computing. 

Meta-analysis using metafor 

  

# load libraries for parallel computing 
library(doParallel) 
library(foreach) 
library(plyr) 
library(dplyr) 
library(parallel) 
 
# source functions we need 
source("/home/pappalardop/bayes2/Functions_Pappalardo_etal.R") 



 
# how many replicates 
replicates <- 2000 
 
# set up cluster 
cl = makeCluster(4, type = "FORK") 
registerDoParallel(cl) 
 
# Divide replicates among cores 
x <- foreach(rep = 1:replicates, .combine = rbind) %dopar%  
    { 
         
        # load libraries 
        library(plyr) 
        library(parallel) 
         
        # load original dataset for this replicate 
        load(paste("/home/pappalardop/bayes2/datasets/lnrrDatasets_rep",  
            rep, sep = "")) 
         
        # Run meta-analysis with default metafor options 
        z.list <- list() 
        z.list <- lapply(datasets, runMetafor, tau.method = "REML",  
            ci = F) 
        z.df <- do.call("rbind.fill", z.list) 
        z.df$method <- "weighted_z" 
         
        # Run meta-analysis with Knapp-Hartung option 
        knha.list <- list() 
        knha.list <- lapply(datasets, runMetafor, tau.method = "REML",  
            ci = T) 
        knha.df <- do.call("rbind.fill", knha.list) 
        knha.df$method <- "weighted_knha" 
         
        # combine dataframes 
        traditional <- dplyr::bind_rows(z.df, knha.df) 
        traditional$replicate <- rep 
         
        # save summary files 
        write.csv(traditional, file = paste("/home/pappalardop/bayes2/res
ults/metafor/metafor_NEW_",  
            rep, ".csv", sep = ""), row.names = F) 
    } 
 
stopCluster(cl) 



Meta-analysis using metafor and bootstraping 

Bootstrap for the mean effect 

  

# load libraries for parallel computing 
library(doParallel) 
library(foreach) 
library(plyr) 
library(dplyr) 
library(parallel) 
 
# source functions we need 
source("Functions_Pappalardo_etal.R") 
 
# how many replicates 
replicates <- 2000 
 
# set up cluster 
cl = makeCluster(4, type = "FORK") 
registerDoParallel(cl) 
 
# Divide replicates among cores 
x <- foreach(rep = 1:replicates, .combine = rbind) %dopar%  
    { 
         
        # load libraries 
        library(parallel) 
        library(plyr) 
         
        # load original dataset for this replicate 
        load(paste("/home/pappalardop/bayes2/datasets/lnrrDatasets_rep",  
            rep, sep = "")) 
         
        # Metafor boot 
        boot.list <- list()  # create list to hold results 
        boot.list <- lapply(datasets, bootMetafor)  # run metafor boot me
ta-analysis  
        boot.df <- do.call("rbind.fill", boot.list)  # put results in a d
ataframe 
        boot.df$rep <- rep  # add replicate 
        boot.df$method <- "weighted_boot"  # add method 
         
        # save summary files 
        write.csv(boot.df, paste("/home/pappalardop/bayes2/results/metafo
rboot/metaforboot",  
            rep, ".csv", sep = ""), row.names = F) 
         



    } 
 
stopCluster(cl) 

Bootstrap for the among-study variance 

  

# load libraries for parallel computing 
library(doParallel) 
library(foreach) 
 
# source functions we need 
source("Functions_Pappalardo_etal.R") 
 
# how many replicates 
replicates <- 2000 
 
# set up cluster 
cl = makeCluster(4, type = "FORK") 
registerDoParallel(cl) 
 
# Divide replicates among cores 
x <- foreach(rep = 1:replicates, .combine = rbind) %dopar%  
    { 
         
        # load libraries 
        library(metafor) 
        library(boot) 
        library(plyr) 
         
        # load original dataset for this replicate 
        load(paste("/home/pappalardop/bayes2/datasets/lnrrDatasets_rep",  
            rep, sep = "")) 
         
        # Metafor boot for tau2 
        boottau.list <- list()  # create empty list to hold results 
        boottau.list <- lapply(datasets, bootMetaforTau)  # run bootstrap 
for tau2 
        boottau.df <- do.call("rbind.fill", boottau.list)  # put results 
in a dataframe 
        boottau.df$rep <- rep  # add replicate number 
        boottau.df$method <- "weighted_boot"  # add method 
         
        # save summary files 
        write.csv(boottau.df, file = paste("/home/pappalardop/bayes2/resu
lts/metaforboot/metafor_boot_tau",  
            rep, ".csv", sep = ""), row.names = F) 
    } 



 
stopCluster(cl) 

Hybrid Bayesian meta-analysis 

  

# load libraries for parallel computing 
library(doParallel) 
library(foreach) 
 
# source functions we need 
source("Functions_Pappalardo_etal.R") 
 
# how many replicates 
replicates <- 2000 
 
# set cluster and how many cores 
cl = makeCluster(4, type = "FORK") 
registerDoParallel(cl) 
 
# Divide replicates among cores 
x <- foreach(rep = 1:replicates, .combine = rbind) %dopar%  
    { 
        # load libraries 
        library(rjags) 
        library(runjags) 
        library(coda) 
        library(plyr) 
         
        # load original dataset for this replicate 
        load(paste("/home/pappalardop/bayes2/datasets/lnrrDatasets_rep",  
            rep, sep = "")) 
         
        # Hybrid Bayesian meta-analysis with uniform prior 
        halfbayes_uniform.list <- list()  # create list to hold results 
        halfbayes_uniform.list <- lapply(datasets, runHalfBayes_uniform_J
AGS)  # run Hybrid Bayesian 
        halfbayes_uniform.df <- do.call("rbind.fill", halfbayes_uniform.l
ist)  # put results in a dataframe 
        halfbayes_uniform.df$rep <- rep  # add replicate 
        halfbayes_uniform.df$method <- "halfbayes.uniform"  # add method 
         
        # save summary files 
        write.csv(halfbayes_uniform.df, paste("/home/pappalardop/bayes2/r
esults/bayesian/bayesian",  
            rep, ".csv", sep = ""), row.names = F) 
         
    } 



 
stopCluster(cl) 

Compile results from different replicates 
  

# how many replicates 
 
replicates <- 2000 

Compile meta-analysis using metafor 

  

# load results for the first replicate 
mydata <- read.csv("/home/pappalardop/bayes2/results/metafor/metafor_NEW_
1.csv") 
 
# Loop to get all result files 
for (i in 2:replicates) { 
    thisfile <- try(read.csv(paste("/home/pappalardop/bayes2/results/meta
for/metafor_NEW_",  
        i, ".csv", sep = ""))) 
    error  # to check for errors 
 <- class(thisfile)[1] 
    print(paste("working in replicate", i, sep = "")) 
    # in case of error 
    if (error == "try-error") { 
        # do nothing 
    } else { 
        mydata <- rbind(mydata, thisfile) 
    } 
} 
# save summary file 
write.csv(mydata, file = "/home/pappalardop/bayes2/results/summary_metafo
r.csv",  
    row.names = FALSE) 

Compile meta analysis using metafor and bootstraping 

  

# METAFOR BOOT 
 
# load results for the first replicate 
mydata <- read.csv("/home/pappalardop/bayes2/results/metaforboot/metaforb
oot1.csv") 
 
# Loop to get all result files 
for (i in 2:replicates) { 



    thisfile <- try(read.csv(paste("/home/pappalardop/bayes2/results/meta
forboot/metaforboot",  
        i, ".csv", sep = ""))) 
    error  # to check for errors 
 <- class(thisfile)[1] 
    # in case of error 
    if (error == "try-error") { 
        # do nothing 
    } else { 
        mydata <- rbind(mydata, thisfile) 
    } 
} 
# save summary file 
write.csv(mydata, file = "/home/pappalardop/bayes2/results/summary_metafo
rboot.csv",  
    row.names = FALSE) 
 
# METAFOR BOOT TAU 
 
# load results for the first replicate 
mydata <- read.csv("/home/pappalardop/bayes2/results/metaforboot/metafor_
boot_tau1.csv") 
 
# Loop to get all result files 
for (i in 2:replicates) { 
    thisfile <- try(read.csv(paste("/home/pappalardop/bayes2/results/meta
forboot/metafor_boot_tau",  
        i, ".csv", sep = ""))) 
    error  # to check for errors 
 <- class(thisfile)[1] 
    # in case of error 
    if (error == "try-error") { 
        # do nothing 
    } else { 
        mydata <- rbind(mydata, thisfile) 
    } 
} 
# save summary file 
write.csv(mydata, file = "/home/pappalardop/bayes2/results/summary_metafo
rboot_tau.csv",  
    row.names = FALSE) 

Compile meta-analysis using Hybrid Bayesian approach 

  

# load results for the first replicate 
mydata <- read.csv("/home/pappalardop/bayes2/results/bayesian/bayesian1.c
sv") 
 



# Loop to get all result files 
for (i in 2:replicates) { 
    thisfile <- try(read.csv(paste("/home/pappalardop/bayes2/results/baye
sian/bayesian",  
        i, ".csv", sep = ""))) 
    error  # to check for errors 
 <- class(thisfile)[1] 
    # in case of error 
    if (error == "try-error") { 
        # do nothing 
    } else { 
        mydata <- rbind(mydata, thisfile) 
    } 
} 
 
# save summary file 
write.csv(mydata, file = "/home/pappalardop/bayes2/results/summary_bayesi
an.csv",  
    row.names = FALSE) 

Exploration of different priors for the Hybrid Bayesian model 
We explored different priors for the among-study variance in the hybrid Bayesian 
model. To analyze the prior’s influence on the posterior results, we chose a small (but 
representative) combination of parameters for the mean number of replicates (n), the 
number of studies (k), and the among-study variance (ߪamong

ଶ ). We analyzed: 

• mean number of replicates: 5, 20 

• number of studies: 5, 25, 50 

• among-study variance: 0.5, 2, 5 

 

# load libraries for parallel computing 
 
library(doParallel) 
library(foreach) 
 
# source functions we need 
 
source("Functions_Pappalardo_etal.R") 
 
# set cluster and how many cores 
 
cl = makeCluster(4, type = "FORK") 
registerDoParallel(cl) 
 
 



x <- foreach(rep = 1:2000, .combine = rbind) %dopar% { 
    # load libraries 
    library(rjags) 
    library(runjags) 
    library(coda) 
    library(dplyr) 
     
    # load original dataset for this replicate 
    load(paste("/pool/genomics/pappalardop/bayes2/datasets/lnrrDatasets_r
ep",  
        rep, sep = "")) 
     
    # subset the target combination of factors 
     
    keep <- c("sigma 1 tau 2 mean.n 5 k 5 mu 0.5 c.mean 1",  
        "sigma 1 tau 2 mean.n 5 k 25 mu 0.5 c.mean 1", "sigma 1 tau 2 mea
n.n 5 k 50 mu 0.5 c.mean 1",  
        "sigma 1 tau 2 mean.n 20 k 5 mu 0.5 c.mean 1", "sigma 1 tau 2 mea
n.n 20 k 25 mu 0.5 c.mean 1",  
        "sigma 1 tau 2 mean.n 20 k 50 mu 0.5 c.mean 1",  
        "sigma 1 tau 5 mean.n 5 k 5 mu 0.5 c.mean 1", "sigma 1 tau 5 mean
.n 5 k 25 mu 0.5 c.mean 1",  
        "sigma 1 tau 5 mean.n 5 k 50 mu 0.5 c.mean 1", "sigma 1 tau 5 mea
n.n 20 k 5 mu 0.5 c.mean 1",  
        "sigma 1 tau 5 mean.n 20 k 25 mu 0.5 c.mean 1",  
        "sigma 1 tau 5 mean.n 20 k 50 mu 0.5 c.mean 1",  
        "sigma 1 tau 0.5 mean.n 5 k 5 mu 0.5 c.mean 1",  
        "sigma 1 tau 0.5 mean.n 5 k 25 mu 0.5 c.mean 1",  
        "sigma 1 tau 0.5 mean.n 5 k 50 mu 0.5 c.mean 1",  
        "sigma 1 tau 0.5 mean.n 20 k 5 mu 0.5 c.mean 1",  
        "sigma 1 tau 0.5 mean.n 20 k 25 mu 0.5 c.mean 1",  
        "sigma 1 tau 0.5 mean.n 20 k 50 mu 0.5 c.mean 1") 
     
    minidatasets <- datasets[names(datasets) %in% keep] 
     
    # Half bayes with cauchy prior 
    halfbayes_cauchy.list <- list() 
    halfbayes_cauchy.list <- lapply(minidatasets, runHalfBayes_cauchy) 
    halfbayes_cauchy.df <- do.call("rbind", halfbayes_cauchy.list) 
    halfbayes_cauchy.df$prior <- "halfbayes.cauchy"  # add method 
     
    # Half bayes with gamma prior 
    halfbayes_gamma.list <- list() 
    halfbayes_gamma.list <- lapply(minidatasets, runHalfBayes_gamma) 
    halfbayes_gamma.df <- do.call("rbind", halfbayes_gamma.list) 
    halfbayes_gamma.df$prior <- "halfbayes.gamma" 
     
    # Half bayes with folded N prior 
    halfbayes_foldedn.list <- list() 



    halfbayes_foldedn.list <- lapply(minidatasets, runHalfBayes_folded_N) 
    halfbayes_foldedn.df <- do.call("rbind", halfbayes_foldedn.list) 
    halfbayes_foldedn.df$prior <- "halfbayes.foldedn"  # add method 
     
    # Half bayes with folded N prior 
    halfbayes_foldedt.list <- list() 
    halfbayes_foldedt.list <- lapply(minidatasets, runHalfBayes_folded_t) 
    halfbayes_foldedt.df <- do.call("rbind", halfbayes_foldedt.list) 
    halfbayes_foldedt.df$prior <- "halfbayes.foldedt"  # add method 
     
    # Half bayes with parameter expansion prior 
    # halfbayes_paramExp.list <- list() # create list to 
    # hold results halfbayes_paramExp.list <- 
    # lapply(datasets, runHalfBayes_paramExp) 
    # halfbayes_paramExp.df <- do.call('rbind', 
    # halfbayes_paramExp.list) halfbayes_paramExp.df$method 
    # <- 'halfbayes.paramExp' # add method 
     
    # Half bayes with uniform prior create list to hold 
    # results 
    halfbayes_uniform1.list <- list() 
    halfbayes_uniform.list <- list() 
    halfbayes_uniform100.list <- list() 
     
    # run half bayes meta-analysis with uniform prior 
    halfbayes_uniform.list <- lapply(minidatasets, runHalfBayes_uniform_J
AGS) 
    halfbayes_uniform1.list <- lapply(minidatasets, runHalfBayes_uniform1
,  
        mymodel = "modelHalfBayes_uniform1.txt") 
    halfbayes_uniform100.list <- lapply(minidatasets, runHalfBayes_unifor
m,  
        mymodel = "modelHalfBayes_uniform100.txt") 
     
    # put results in a dataframe 
    halfbayes_uniform1.df <- do.call("rbind", halfbayes_uniform1.list) 
    halfbayes_uniform.df <- do.call("rbind", halfbayes_uniform.list) 
    halfbayes_uniform100.df <- do.call("rbind", halfbayes_uniform100.list
) 
     
    # add method 
    halfbayes_uniform1.df$prior <- "halfbayes.uniform1" 
    halfbayes_uniform.df$prior <- "halfbayes.uniform10" 
    halfbayes_uniform100.df$prior <- "halfbayes.uniform100" 
     
    # combine all data 
    priors <- rbind(halfbayes_cauchy.df, halfbayes_gamma.df,  
        halfbayes_foldedn.df, halfbayes_foldedt.df, halfbayes_uniform.df,  
        halfbayes_uniform100.df, halfbayes_uniform1.df) 



    priors$rep <- rep 
     
    # save summary files 
    write.csv(priors, paste("/pool/genomics/pappalardop/bayes2/results/pr
iors/priors2_",  
        rep, ".csv", sep = ""), row.names = F) 
     
} 
 
stopCluster(cl) 

 

Summarize simulations results 
We summarized the performance of traditional and Bayesian meta-analysis to 
estimate an overall effect for each combination of mu, tau, k and method, averaging 
between the 2000 replicates (results presented in the main manuscript, Figure 3): 

   

library(dplyr) 
library(Metrics) 
 
# --------------Load Data------------------ 
 
# load metafor results 
 
metafor <- read.csv("c:/Users/Paula/Dropbox/Meta-analysis/MetaAnalysis_Pa
ula/ComparingMethods/MS/finalSims/Results_2000reps/summary_metafor.csv",  
    header = T) 
 
# load bootstraping results 
 
metaforboot <- read.csv("c:/Users/Paula/Dropbox/Meta-analysis/MetaAnalysi
s_Paula/ComparingMethods/MS/finalSims/Results_2000reps/summary_metaforboo
t.csv",  
    header = T) 
 
# load files with Bayesian results 
 
bayesian <- read.csv("c:/Users/Paula/Dropbox/Meta-analysis/MetaAnalysis_P
aula/ComparingMethods/MS/finalSims/Results_2000reps/summary_bayesian.csv"
,  
    header = T) 
 
# --------------Summarize data------------------ 
 
# Metafor 



 
met <- metafor %>% dplyr::filter(!is.na(obs.mu)) %>% dplyr::group_by(true
.mu,  
    true.tau, sigma, k, mean.n, method) %>% dplyr::summarise(ov.effect = 
mean(obs.mu),  
    tau2 = mean(obs.tau), rmse.eff = rmse(obs.mu, true.mu),  
    bias.effect = mean(bias.eff), ci.bias.eff = t.95CI(bias.eff),  
    bias.tau2 = mean(bias.tau, na.rm = F), ci.bias.tau = t.95CI(bias.tau)
,  
    coverage.mu = mean(cov.mu), coverage.mu.cil = bi.95.l(cov.mu),  
    coverage.mu.ciu = bi.95.u(cov.mu), coverage.tau = mean(cov.tau),  
    coverage.tau.cil = bi.95.l(cov.tau), coverage.tau.ciu = bi.95.u(cov.t
au),  
    effect.width = mean(mu.width), tau2.width = mean(tau.width,  
        na.rm = F), ci.mu.width = t.95CI(mu.width), ci.tau.width = t.95CI
(tau.width),  
    mean.i2 = mean(i2), i2.ci = t.95CI(i2)) 
 
# Metafor with bootstraping 
 
metboot <- metaforboot %>% dplyr::filter(!is.na(obs.mu)) %>%  
    dplyr::group_by(true.mu, true.tau, sigma, k, mean.n,  
        method) %>% dplyr::summarise(ov.effect = mean(obs.mu),  
    rmse.eff = rmse(obs.mu, true.mu), bias.effect = mean(bias.eff),  
    ci.bias.eff = t.95CI(bias.eff), coverage.mu = mean(cov.mu),  
    coverage.mu.cil = bi.95.l(cov.mu), coverage.mu.ciu = bi.95.u(cov.mu),  
    effect.width = mean(mu.width), ci.mu.width = t.95CI(mu.width)) 
 
# Hybrid Bayesian 
 
hb <- bayesian %>% dplyr::filter(Rhat.mu < 1.1 | Rhat.tau2 <  
    1.1) %>% dplyr::group_by(true.mu, true.tau, sigma, k,  
    mean.n, method) %>% dplyr::summarise(ov.effect = mean(obs.median.mu),  
    eff.cil = median(obs.mu.hdiL), eff.ciu = median(obs.mu.hdiU),  
    tau2 = mean(obs.median.tau), rmse.eff = rmse(obs.median.mu,  
        true.mu), rmse.tau = rmse(obs.median.tau, true.tau),  
    bias.effect = mean(bias.median.eff), ci.bias.eff = t.95CI(bias.median
.eff),  
    bias.tau2 = mean(bias.median.tau), ci.bias.tau = t.95CI(bias.median.t
au),  
    coverage.mu = mean(cov.mu), coverage.mu.cil = bi.95.l(cov.mu),  
    coverage.mu.ciu = bi.95.u(cov.mu), coverage.tau = mean(cov.tau),  
    coverage.tau.cil = bi.95.l(cov.tau), coverage.tau.ciu = bi.95.u(cov.t
au),  
    meanRhat.mu = mean(Rhat.mu), meanRhat.tau2 = mean(Rhat.tau2),  
    maxRhat.mu = max(Rhat.mu), maxRhat.tau2 = max(Rhat.tau2),  
    effect.width = mean(mu.width), ci.mu.width = t.95CI(mu.width),  
    tau2.width = mean(tau.width), ci.tau.width = t.95CI(tau.width)) 
 



# remove things not in use 
 
rm(metafor, bayesian, metboot) 

 

 We summarized the performance of traditional and Bayesian meta-analysis to 
estimate the among-study variance for each combination of mu, tau, k and method, 
averaging between the 2000 replicates (results presented in the Supporting 
Information, Figures S7-S10):   

 

# --------------Load Data------------------ 
 
# load Bayesian results 
 
bayesian <- read.csv("c:/Users/Paula/Dropbox/Meta-analysis/MetaAnalysis_P
aula/ComparingMethods/MS/finalSims/Results_2000reps/summary_bayesian.csv"
,  
    header = T) 
 
# load metafor results 
 
metafor <- read.csv("c:/Users/Paula/Dropbox/Meta-analysis/MetaAnalysis_Pa
ula/ComparingMethods/MS/finalSims/Results_2000reps/summary_metafor.csv",  
    header = T) 
 
# load metafor with bootstraping results 
 
metaforboot <- read.csv("c:/Users/Paula/Dropbox/Meta-analysis/MetaAnalysi
s_Paula/ComparingMethods/MS/finalSims/Results_2000reps/summary_metaforboo
t.csv",  
    header = T) 
 
metaforboottau <- read.csv("c:/Users/Paula/Dropbox/Meta-analysis/MetaAnal
ysis_Paula/ComparingMethods/MS/finalSims/Results_2000reps/summary_metafor
boot_tau.csv",  
    header = T) 
 
# compile results from the different methods/files 
 
metaforbootall <- metaforboottau %>% dplyr::select(obs.tau,  
    tau.ci.lb, tau.ci.ub, bias.tau, cov.tau, tau.width,  
    rep, k, mean.n, true.tau) %>% dplyr::right_join(metaforboot,  
    by = c("true.tau", "k", "mean.n", "rep")) 
 
# ----------Summarize data------------------ 
 



# Metafor 
 
met <- metafor %>% dplyr::filter(!is.na(obs.tau)) %>% dplyr::group_by(tru
e.mu,  
    true.tau, sigma, k, mean.n, method) %>% dplyr::summarise(ov.effect = 
mean(obs.mu),  
    tau2 = mean(obs.tau), rmse.eff = rmse(obs.mu, true.mu),  
    bias.effect = mean(bias.eff), ci.bias.eff = t.95CI(bias.eff),  
    bias.tau2 = mean(bias.tau, na.rm = F), ci.bias.tau = t.95CI(bias.tau)
,  
    coverage.mu = mean(cov.mu), coverage.mu.cil = bi.95.l(cov.mu),  
    coverage.mu.ciu = bi.95.u(cov.mu), coverage.tau = mean(cov.tau),  
    coverage.tau.cil = bi.95.l(cov.tau), coverage.tau.ciu = bi.95.u(cov.t
au),  
    effect.width = mean(mu.width), tau2.width = mean(tau.width,  
        na.rm = F), ci.mu.width = t.95CI(mu.width), ci.tau.width = t.95CI
(tau.width),  
    rmse.tau = rmse(tau2, true.tau)) 
 
# Metafor with bootstraping 
 
metboot <- metaforbootall %>% dplyr::filter(!is.na(obs.tau)) %>%  
    dplyr::group_by(true.mu, true.tau, sigma, k, mean.n,  
        method) %>% dplyr::summarise(ov.effect = mean(obs.mu),  
    tau2 = mean(obs.tau), rmse.eff = rmse(obs.mu, true.mu),  
    bias.effect = mean(bias.eff), ci.bias.eff = t.95CI(bias.eff),  
    bias.tau2 = mean(bias.tau, na.rm = F), ci.bias.tau = t.95CI(bias.tau)
,  
    coverage.mu = mean(cov.mu), coverage.mu.cil = bi.95.l(cov.mu),  
    coverage.mu.ciu = bi.95.u(cov.mu), coverage.tau = mean(cov.tau),  
    coverage.tau.cil = bi.95.l(cov.tau), coverage.tau.ciu = bi.95.u(cov.t
au),  
    effect.width = mean(mu.width), tau2.width = mean(tau.width,  
        na.rm = F), ci.mu.width = t.95CI(mu.width), ci.tau.width = t.95CI
(tau.width),  
    rmse.tau = rmse(tau2, true.tau)) 
 
 
# Hybrid Bayesian 
 
hb <- bayesian %>% dplyr::filter(Rhat.mu < 1.1 | Rhat.tau2 <  
    1.1) %>% dplyr::group_by(true.mu, true.tau, sigma, k,  
    mean.n, method) %>% dplyr::summarise(ov.effect = mean(obs.median.mu),  
    eff.cil = median(obs.mu.hdiL), eff.ciu = median(obs.mu.hdiU),  
    tau2 = mean(obs.median.tau), rmse.eff = rmse(obs.median.mu,  
        true.mu), rmse.tau = rmse(obs.median.tau, true.tau),  
    bias.effect = mean(bias.median.eff), ci.bias.eff = t.95CI(bias.median
.eff),  
    bias.tau2 = mean(bias.median.tau), ci.bias.tau = t.95CI(bias.median.t



au),  
    coverage.mu = mean(cov.mu), coverage.mu.cil = bi.95.l(cov.mu),  
    coverage.mu.ciu = bi.95.u(cov.mu), coverage.tau = mean(cov.tau),  
    coverage.tau.cil = bi.95.l(cov.tau), coverage.tau.ciu = bi.95.u(cov.t
au),  
    meanRhat.mu = mean(Rhat.mu), meanRhat.tau2 = mean(Rhat.tau2),  
    maxRhat.mu = max(Rhat.mu), maxRhat.tau2 = max(Rhat.tau2),  
    effect.width = mean(mu.width), ci.mu.width = t.95CI(mu.width),  
    tau2.width = mean(tau.width), ci.tau.width = t.95CI(tau.width)) 
 
 
# remove objects not in use 
 
rm(metafor, bayesian, metaforbootall, metaforboot, metaforboottau) 

  

This is how we compiled and summarized the exploration of the different priors for 
the among-study variance in the Hybrid Bayesian model:   

 

# load priors data 
 
priors <- read.csv("c:/Users/Paula/Dropbox/Meta-analysis/MetaAnalysis_Pau
la/ComparingMethods/MS/finalSims/Results_2000reps/summary_priors_allreps.
csv",  
    as.is = T) 
 
# create factors for plots 
 
priors$f.prior <- factor(priors$prior, levels = c("halfbayes.cauchy",  
    "halfbayes.gamma", "halfbayes.foldedn", "halfbayes.foldedt",  
    "halfbayes.uniform10", "halfbayes.uniform100", "halfbayes.uniform1"),  
    labels = c("Cauchy", "Gamma", "Folded n", "Folded t",  
        "Uniform 10", "Uniform 100", "Uniform 1")) 
priors$f.tau2 <- factor(priors$true.tau, levels = c(0.5,  
    2, 5), labels = c("tau2= 0.5", "tau2= 2", "tau2= 5")) 
priors$f.k <- factor(priors$k, levels = c(5, 25, 50), labels = c("k= 5",  
    "k= 25", "k= 50")) 
 
# count total simulations in each combination 
 
countsbygroup <- priors %>% dplyr::add_count(prior, true.tau,  
    k, mean.n) %>% dplyr::rename(ntotal = n) %>% dplyr::distinct(prior,  
    true.tau, k, mean.n, ntotal) 
 
# count simulations with 'good' R hats 
 
goodrhat <- priors %>% dplyr::filter(Rhat.tau2 < 1.1) %>%  



    dplyr::add_count(prior, true.tau, k, mean.n) %>% dplyr::distinct(prio
r,  
    true.tau, k, mean.n, n) %>% dplyr::rename(n.good = n) 
 
# combine information for final summary 
summaryrhat <- countsbygroup %>% dplyr::left_join(., goodrhat) %>%  
    dplyr::mutate(n.bad = ntotal - n.good) %>% dplyr::mutate(prop.goodrha
t = n.good/ntotal) %>%  
    dplyr::mutate(prop.badrhat = 1 - prop.rhat) 

Summarize data from the literature review 
The data compiled in the literature review is included as an excel file in the Dryad data 
repository. 

Here the code we used to summarize the general information from the literature 
review, and information about the number of replicates and number of studies:   

 

# load libraries 
 
library(readxl) 
library(tidyr) 
library(Rmisc) 
library(dplyr) 
library(ggplot2) 
library(Metrics) 
library(modeest, quietly = T) 
 
# load literature search data directly from excel file 
 
rev <- as.data.frame(read_excel("C:/Users/Paula/Dropbox/Meta-analysis/Met
aAnalysis_Paula/ComparingMethods/MS/ns_ks_search/extractingData_Jan2019.x
lsx",  
    sheet = "Revision", range = cell_cols("A:J"))) 
 
main <- as.data.frame(read_excel("C:/Users/Paula/Dropbox/Meta-analysis/Me
taAnalysis_Paula/ComparingMethods/MS/ns_ks_search/extractingData_Jan2019.
xlsx",  
    sheet = "ClimChange", range = cell_cols("A:AJ"))) 
 
ks <- as.data.frame(read_excel("C:/Users/Paula/Dropbox/Meta-analysis/Meta
Analysis_Paula/ComparingMethods/MS/ns_ks_search/extractingData_Jan2019.xl
sx",  
    sheet = "ClimChange_ks", range = cell_cols("A:G"))) 
 
ns <- as.data.frame(read_excel("C:/Users/Paula/Dropbox/Meta-analysis/Meta
Analysis_Paula/ComparingMethods/MS/ns_ks_search/extractingData_Jan2019.xl



sx",  
    sheet = "ClimChange_ns", cell_cols("A:H"), col_types = c("numeric",  
        "text", "skip", "skip", "numeric", "skip", "skip",  
        "numeric"))) 
 
 
# -------------Number of replicates----------------- 
 
# calculate mean ni from treatment and control 
ns$mean.rep <- rowMeans(ns[c("nt", "nc")], na.rm = T) 
 
# add paper identifiers to ns and ks 
ns <- main %>% dplyr::select(pdf.name, change.topic, topic.group,  
    taxa, environment) %>% dplyr::right_join(ns, by = "pdf.name") %>%  
    dplyr::select(paper.id, pdf.name, topic.group, taxa,  
        environment, mean.rep) %>% dplyr::filter(!is.na(mean.rep)) 
 
# What proportion of ns are lower than 10 
 
total.ns <- ns %>% nrow() 
less10row <- ns %>% dplyr::filter(mean.rep < 10) %>% nrow() 
perless <- less10row * 100/total.ns 
 
# calculate median number of replicates 
median.rep <- median(ns$mean.rep, na.rm = T) 
 
# get the mode of the number of replicates 
mode.n <- mfv(ns$mean.rep)[1] 
 
# ------------Number of studies-------------------- 
 
ks <- main %>% dplyr::select(pdf.name, change.topic, topic.group,  
    taxa, environment) %>% dplyr::right_join(ks, by = "pdf.name") 
 
# subset ks by type of grouping 
 
ks.analysis <- ks %>% filter(k.type == "analysis") 
ks.overall <- ks %>% filter(k.type == "overall") 
ks.category <- ks %>% filter(k.type == "category") 
 
# what proportion of ks are lower than 20 
 
total.ks <- ks.analysis %>% nrow() 
less20row <- ks.analysis %>% filter(k < 20) %>% nrow 
perless <- less20row * 100/total.ks 
 
# what proportion of ks are lower than 40 
 
total.ks <- ks.analysis %>% nrow() 



less40row <- ks.analysis %>% filter(k < 40) %>% nrow 
perless <- less40row * 100/total.ks 
 
# get the modes for the number of studies 
 
mode.ka <- mfv(ks.analysis$k)[1] 
mode.kc <- mfv(ks.category$k)[1] 
 
# get the median for the number of studies 
 
median.ka <- median(ks.analysis$k) 
median.kc <- median(ks.category$k) 
median.ko <- median(ks.overall$k) 
 
# ----------Revision related------------------- 
 
# check with journals are publishing more meta-analysis 
 
byjournal <- rev %>% dplyr::filter(inclusion.criterion ==  
    "yes") %>% dplyr::group_by(pub.name) %>% dplyr::count() %>%  
    dplyr::arrange(desc(n)) 
 
# count papers reviewed for climate change 
 
revised <- rev %>% dplyr::filter(!is.na(inclusion.criterion)) 
 
# papers included in the analysis 
 
included <- rev %>% dplyr::filter(inclusion.criterion ==  
    "yes") 
 
# count papers providing information on ks and ns with 
# paper id 
 
ksinfo <- length(unique(ks$pdf.name)) 
nsinfo <- length(unique(ns$pdf.name)) 

 

Here the code used to summarize information about the type of confidence interval 
used to calculate a mean effect size:   

 

library(plyr) 
library(ggplot2) 
 
#---------------CI's------------------ 
 



# count number of papers reporting each uncertainty interval 
 
citable <- main %>% dplyr::count(ci.type) %>% dplyr::mutate(percent = n/s
um(n) *  
    100) 
 
# add a zero entry for KHSJ that was not reported 
 
citable <- rbind(citable, c("KHSJ", 0, 0)) 
 
# re convert n as numeric 
 
citable$n <- as.numeric(citable$n) 
 
# add factor for plots 
 
citable$f.ci <- factor(citable$ci.type, levels = c("not mentioned",  
    "bootstrap", "z", "z and bootstrap", "se", "Bayesian",  
    "Bayesian and bootstrap", "KHSJ"), labels = c("not mentioned",  
    "bootstrap", "z-distribution", "z and bootstrap", "standard error",  
    "Bayesian", "Bayesian and bootstrap", "KHSJ")) 
 
# match type of CI with each k 
 
kci <- ks %>% dplyr::left_join(main, by = "pdf.name") %>%  
    dplyr::filter(k <= 40 & k.type == "analysis") %>% dplyr::group_by(ci.
type) %>%  
    dplyr::count() 
 
# how many low ks 
 
under10 <- ks.analysis %>% dplyr::filter(k <= 10) 
p.under10 <- (nrow(under10) * 100)/nrow(ks.analysis) 
 
under40 <- ks.analysis %>% dplyr::filter(k <= 40) 
p.under40 <- (nrow(under40) * 100)/nrow(ks.analysis) 
 
# -----------Software------------------ 
 
# check which software used the papers that didn't 
# mention the type of CI 
 
nms <- main %>% dplyr::filter(ci.type == "not mentioned") 
 
metawin <- nms %>% dplyr::filter(software == "Metawin") %>%  
    nrow() 
cma <- nms %>% dplyr::filter(software == "CMA") %>% nrow() 
metafor <- nms %>% dplyr::filter(software == "R, metafor") %>%  
    nrow() 



 
used.defaults <- metawin + cma + metafor 
 
# if assuming software defaults, count new z and t CIs 
 
newz <- as.numeric(citable %>% filter(ci.type == "z") %>%  
    magrittr::extract2("n")) + cma + metafor 
newt <- metawin 
 
# % percentage of papers that didn't report confidence interval 
 
percent.nas <- as.numeric(citable %>% filter(ci.type ==  
    "not mentioned") %>% magrittr::extract2("percent")) 
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