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Abstract. Theoretical studies of marine protected areas (MPAs) suggest that more mobile species
should exhibit reduced local effects (defined as the ratio of the density inside vs. outside of the MPA).
However, empirical studies have not supported the expected negative relationship between the local
effect and mobility. We propose that differential, habitat-dependent movement (i.e., a higher move-
ment rate in the fishing grounds than in the MPA) might explain the disparity between theoretical
expectations and empirical results. We evaluate this hypothesis by building two-patch box and step-
ping-stone models and show that increasing disparity in the habitat-specific movement rates shifts the
relationship between the local effect and mobility from negative (the previous theoretical results) to
neutral or positive (the empirical pattern). This shift from negative to positive occurs when differential
movement offsets recruitment and mortality differences between the two habitats. Thus, local effects
of MPAs might be caused by behavioral responses via differential movement rather than by, or in
addition to, reductions in mortality. In addition, the benefits of MPAs, in terms of regional abundance
and fishing yields, can be altered by the magnitude of differential movement. Thus, our study points
to a need for empirical investigations that disentangle the interactions among mobility, differential
movement, and protection.

Key words: differential movement; fishing harvest; fishing yield; local effect; marine protected area; regional
abundance.

INTRODUCTION

Movement strongly influences the distribution of organ-
isms across landscapes and therefore plays a critical role in
determining a population’s interactions with other species
(Mccauley et al. 1996, Hanski 1998, Morales and Ellner
2002, Leibold et al. 2004, Jiao et al. 2016), its response to
environmental change (Damschen et al. 2008, Kininmonth
et al. 2011, Janin et al. 2012), and the effectiveness of man-
agement actions (St. Mary et al. 2000, Starr et al. 2004,
P�erez-Ruzafa et al. 2008, Gr€uss et al. 2011). Although
movement usually takes place in a heterogeneous landscape,
and organisms are known to respond to a variety of land-
scape features (e.g., edges, habitat composition, and preda-
tion risk; Haynes and Cronin 2006, Nathan et al. 2008,
Reeve and Cronin 2010, Abrams et al. 2012), the role of
habitat-dependent movement (e.g., when the movement rate
depends on the habitat; hereinafter referred to as differential
movement) is not often considered in ecological models or
management decisions.
The establishment of marine protected areas (MPAs) is a

management tool used to increase biodiversity, population
abundance, and/or fishing yield by reducing overfishing,
habitat destruction, and by-catch. For example, MPAs can
increase fishing yield by exporting adults and juveniles (via
spillover) from the MPAs into fishing grounds (Abesamis

et al. 2006, Kellner et al. 2008). Movement of individuals
directly influences spillover and thus the effectiveness of
MPAs (Gr€uss et al. 2011). Most theoretical studies of
MPAs, which have assumed random and homogeneous
movement rates, have shown that increasing a species’ over-
all mobility (e.g., average movement rate of non-larvae)
decreases fish density in MPAs but increases fish density in
the fishing grounds. As a result, the ratio of the density
inside vs. outside the MPAs (hereinafter referred to as the
“local effect”) should decrease with increased mobility (see
Gerber et al. 2003, Starr et al. 2004, Malvadkar and Hast-
ings 2008). This decrease in the local effect results from
increased mixing between the two habitats. However, empiri-
cal studies have failed to document the expected negative
relationship between the local effect and mobility. Meta-
analyses have either found no significant relationship
(Micheli et al. 2004, Lester et al. 2009) or a possible positive
relationship (Claudet et al. 2010).
To explain this apparent mismatch between theory and

empirical results, some authors have suggested that fishing
harvest, trophic interactions, and structure of fish assem-
blages would largely influence the densities inside and out-
side of MPAs, thus masking the expected negative effect of
mobility on the local effect (Micheli et al. 2004, Palumbi
2004, Lester et al. 2009). While such explanations are valid,
we suggest that the expectations from existing models might
be misleading. Instead, we suggest that organisms might
move differentially throughout an MPA network, rather
than homogeneously as most existing models have assumed.
One notable exception is Langebrake et al. (2012), who
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proposed and theoretically evaluated two hypotheses to
explain the mismatch between existing theory and data: (1)
that organisms move at different rates in the MPA vs. in the
fishing grounds (i.e., differential movement), and (2) that
organisms actively bias their movement toward the MPA
when they are at the reserve boundary, but otherwise move
at similar rates in the two habitats (i.e., biased movement).
They rejected the first hypothesis as a viable mechanism to
explain the mismatch, but accepted the second. Here, we re-
evaluate the differential movement hypothesis.
To test their differential movement hypothesis, Lange-

brake et al. (2012) assumed that fish and other harvested
organisms move more in the fishing grounds where they are
harvested and/or where the habitat has been degraded by
fishing exploitation, and move less in MPAs where they are
not harvested and/or where the habitat is in better condi-
tion. This habitat-specific movement pattern could result
from ontogenetic shifts (Gerber et al. 2005), aggregative
behavior (Eggleston and Parsons 2008), and/or behavioral
responses to habitat structure (e.g., Tischendorf and Fahrig
2000, Baguette and Van Dyck 2007), mortality risk (Dou-
glas-Hamilton et al. 2005, Eggleston and Parsons 2008,
Januchowski-Hartley et al. 2012), or abiotic conditions
(e.g., oil spill effects; see Fodrie et al. 2014). Higher mobility
in the fishing grounds vs. the MPA could lead to net move-
ment of individuals from the fishing grounds to the MPA,
creating a spill-in pattern (in contrast to the classic spillover
pattern; see Eggleston and Parsons [2008] for an empirical
example of spill-in). This net movement could increase the
local effect by increasing the density of the focal species in
the MPA but decreasing its density in the fishing ground,
thus potentially explaining the empirical results of Micheli
et al. (2004), Lester et al. (2009), and Claudet et al. (2010).
However, the above verbal argument, which motivated
Langebrake et al.’s (2012) study, was not supported by their
formal theoretical investigation.
Here, we propose that Langebrake et al. (2012) did not

find a positive relationship between mobility and the local
effect because of assumptions they made in analyzing their
model. They developed a reaction–diffusion model that
assumed that new organisms recruited via larval rain from
outside the system, died at higher rates in the fishing
grounds (due to harvesting), and moved at different rates
inside vs. outside the MPA. They solved this model by con-
straining the density of the target organism to be continu-
ous across the boundary between the MPA and the fishing
grounds. However, fish density can abruptly change near
boundaries (Chapman and Kramer 1999), and other theo-
retical studies have successfully modeled such discontinu-
ities (Ovaskainen and Cornell 2003, Maciel and Lutscher
2013). The discontinuity at the boundary could influence
population dynamics in different patches (see Maciel and
Lutscher 2013), further influencing the equilibria and the
local effect. We therefore hypothesized that the restrictive
assumption that density was continuous across the MPA
boundary may have been responsible for the failure of
Langebrake et al. (2012) to produce flat or positive rela-
tionships between mobility and the local effect.
To address this conjecture and to re-evaluate the differen-

tial movement hypothesis, we studied the isolated and com-
bined effects of differential movement and overall mobility

on several measures of MPA efficacy, but without assuming
density continuity at the boundary. Because MPA size can
influence the strength of animal movement as well as
directly affect MPA efficacy (Pittman et al. 2014), we also
considered the effect of the MPA size (relative to the fishing
ground). We did this by building discrete spatial models: a
two-patch box model in which one cell represents the MPA
while the other represents the fishing ground, and a step-
ping-stone model in which fish moved between discrete cells
along a linear shoreline. We first analytically solved the two-
patch box model and then used numerical simulations to
solve the multi-cell, stepping-stone model. In all cases, we
examined how differential movement (i.e., the relative move-
ment rate from one cell to another in the MPA vs. in the
fishing grounds) and overall mobility (i.e., the overall magni-
tude of the movement rates) affected three indices reflecting
the performance of MPAs: (1) the local effect (i.e., the
density in the MPA relative to the density in the fishing
grounds); (2) regional abundance (i.e., the combined abun-
dance in both the MPA and the fishing grounds); and (3)
fishing yield (assumed proportional to the product of the
size of the fishing grounds and the density of the species in
the fishing grounds). We also varied the relative sizes of the
MPA and the fishing grounds by adjusting the proportion of
cells in the landscape that were in the MPA or in the fishing
grounds. To highlight the changes in abundances and/or
densities resulting from the MPA, we rescaled the above three
indices by their values before establishment of the MPA.

MODEL DEVELOPMENT

We built a discrete, one-dimensional spatial model (i.e., a
stepping-stone model) in which fish moved between adja-
cent, discrete cells on a linear shoreline, along which MPAs
and fishing grounds alternated periodically. The study
region consisted of one of these repeating units, which was
comprised of SM + SF discrete and equal-sized cells: the
MPA consisted of SM cells and the fishing ground consisted
of SF cells (see Fig. 1). We used a circular representation of
space by connecting the left side of the fishing ground with
the right side of the MPA.
We developed three model structures depicting (1) an

open system (with constant larval rain), (2) a closed system

FIG. 1. A schematic of the linear study system, with marine pro-
tected areas (MPAs) and fishing grounds (FG) alternating along the
coastline. Each cell (indicated by a square) has a length of 1 unit,
and each MPA consists of SM cells, while each fishing ground con-
sists of SF cells. Here, we show the case in which SM = SF = 5. Thus,
the system we model, which represents a single MPA and fishing
ground, is divided into SM + SF cells with the boundary occurring
between cell 1 (in the MPA) and cell �1 (in the FG). We wrap the
MPA and fishing ground so that the SM

th cell in the MPA connects
to the �SF

th cell in the FG, thus creating a repeating linear system
of MPAs and fishing grounds.
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(with logistic growth in each cell), and (3) a semi-closed sys-
tem (with logistic growth but larval redistribution among
cells). For the open system, we assumed that the density of
the focal species in each cell increased via constant larval
recruitment (R); that is, we assumed that all reproduction
came from outside the system because the MPA system was
small relative to the dispersal ability of the organism. We
then relaxed this assumption and explored a closed system
by assuming logistic growth in a cell in which all larvae were
retained locally (i.e., in the same cell as their parents). We
then explored an intermediate version, for a semi-closed
system, in which there was logistic growth within a cell but
larvae were redistributed equally among all cells. Thus,
these three models represent a gradient in the scale of the
MPA–fishing-ground system relative to the scale of larval
dispersal. We focus on the results of the open system (with
constant larval rain) for its simplicity, but briefly summarize
results for the two models with logistic growth (which are
presented in more detail in the Appendix S1). In general,
results regarding the effect of differential movement and
mobility were similar for all three systems.
Organisms in all cells incurred the same intensity of natu-

ral mortality (lN), and organisms in the fishing grounds
incurred additional mortality due to fishing (lF). We
assumed that the mortality due to fishing (lF) was constant
in each cell in the fishing ground and independent of the
MPA size (as a special case, this can be achieved when there
is no redistribution of fishing effort in response to the estab-
lishment of an MPA).
The dynamics within a cell were also affected by emigra-

tion to, and immigration from, the adjacent cells. We
assumed that total emigration rate from each cell in the
MPA was DM, while it was DF in the fishing ground, and
that emigrants from a cell had the same chance of moving
into either of the two adjacent cells (i.e., movement was not
directed and there was no movement bias). Adopting the
notation NM;i (i = 1, 2,. . .,SM) for the density of the focal
species in each MPA cell, where cells 1 and SM are adjacent
to the fishing grounds, and NF;i (i = �SF,. . .,�2, �1) for the
density in the fishing ground, with cells �SF and �1 adja-
cent to MPAs (see Fig. 1), these assertions led to the follow-
ing model for the dynamics in the fishing grounds for the
open system:

dNF;�SF

dt
¼R� lN þ lFð ÞNF;�SF �DFNF;�SF

þDF

2
NF;�SFþ1 þDM

2
NM;SM

(1)

dNF; i

dt
¼R� lN þ lFð ÞNF; i �DFNF; i

þDF

2
NF; i�1 þNF; iþ1
� �

for i ¼ �SF þ 1; . . .;�3;�2

(2)

dNF;�1

dt
¼R� lN þ lFð ÞNF;�1 �DFNF;�1

þDF

2
NF;�2 þDM

2
NM;1

(3)

In the MPA (where there was no fishing mortality), we
had

dNM;1

dt
¼R�lNNM;1�DMNM;1þDM

2
NM;2þDF

2
NF;�1 (4)

dNM; i

dt
¼R� lNNM; i �DMNM; i þDM

2
NM;i�1 þNM;iþ1
� �

for i ¼ 2;3; . . .;SM � 1

(5)

dNM;SM

dt
¼R� lNNM;SM �DMNM;SM þDM

2
NM;SM�1

þDF

2
NF;�SF :

(6)

When the size of the MPA and the fishing ground were
equal (i.e., SM = SF), we sought an approach that would facili-
tate analytic solutions, so we simplified the model to have only
two cells (i.e., SM = SF = 1). We refer to this model as a two-
patch box model, which with constant larval rain becomes

dNF

dt
¼ R� lN þ lFð ÞNF �DFNF þDMNM (7)

dNM

dt
¼ R� lNNM �DMNM þDFNF (8)

Armed with insights from the box model, we then analyzed
results of the stepping-stone model (SM + SF > 2). Although
the stepping-stone model (Eqs. 1–6) can sometimes admit
explicit analytic solutions, the resulting expressions are too
cumbersome for subsequent analysis; hence we resorted to
numerical simulations. We used a fixed landscape size (with
SM + SF = 10), although simulations with larger landscapes
demonstrated that the qualitative patterns were unaffected by
the number of cells in the study system. We first simulated the
results prior to establishment of the MPA (i.e., when all cells
were fished) to provide a baseline from which to evaluate
effects of protection. We then simulated the responses after
establishment of the MPA network to study the combined
effects of differential movement, overall mobility, and the rel-
ative size of the MPA (SM/(SM + SF)) on the average density
within each habitat and on the spatial pattern in density
across the entire MPA–fishing-ground system.
For analyses of the box model and simulations of the step-

ping-stone model, we focused on the local effect, regional
abundance, and fishing yield. For ease of interpretation of
figures, we rescaled all responses relative to their value
before establishing the MPA. Note that by definition the
local effect was equal to 1 before the MPA was established,
so for this response variable rescaling had no effect.
After exploring the behavior of the open system (with con-

stant larval rain), we then briefly explored results for the
closed and semi-closed systems. For the closed system (with
logistic growth, but without larval redistribution), we simply
replaced the recruitment term, R, in Eqs. 1–6 with a logistic
term representing gains via recruitment and losses via
density-dependent mortality, rNj,i � rN2

j,i/K, where r is per
capita growth rate, K is the carrying capacity of any cell (we
assumed r and K were the same in the MPA and fishing
grounds, and Nj,i is the density in cell i in habitat j). For the
semi-closed system, we assumed that larvae were well mixed
and redistributed uniformly among all cells in the system,
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rather than being retained locally. Thus, for the semi-closed
system, we replaced the recruitment term in the logistic (i.e.,

rN) with 1
SMþSF

rF
P�1

i¼�SF
NF; i þ rM

PSM
i¼1 NM; i

� �
. For the

closed system, we analytically solved the two-patch box
model and then simulated results for the stepping-stone
model. However, the semi-closed system was more complex,
so we restricted our analyses to simulations of the two-patch
box model as well as the stepping-stone model.

RESULTS

The open system (constant larval rain)

The two-patch box model.—This model (Eqs. 7 and 8) has
the following analytical solutions for the densities of organ-
isms in the MPA and the fishing ground:

N�
F ¼ R lN þ 2DMð Þ

lN þ lF þDFð ÞlN þ lN þ lFð ÞDM
(9)

N�
M ¼ R lN þ lF þ 2DFð Þ

lN þ lF þDFð ÞlN þ lN þ lFð ÞDM
(10)

By setting DF
DM

¼ b, the strength of differential movement,
the above solutions can be rearranged as

N�
F ¼ R lN þ 2DMð Þ

lN þ lF þ bDMð ÞlN þ lN þ lFð ÞDM
(11)

N�
M ¼ R lN þ lF þ 2bDMð Þ

lN þ lF þ bDMð ÞlN þ lN þ lFð ÞDM
(12)

From Eqs. 11 and 12, we derive the influence of differen-
tial movement on the densities of organisms in each cell by
differentiating Eqs. 11 and 12 with respect to b

d N�
M

� �
db

¼ RDM lN þ lFð Þ lN þ 2DMð Þ
lN þ lF þ bDMð ÞlN þ lN þ lFð ÞDM½ �2 [0 (13)

d N�
F

� �
db

¼ �RlNDM lN þ 2DMð Þ
lN þ lF þ bDMð ÞlN þ lN þ lFð ÞDM½ �2\0 (14)

Therefore, in the system with constant larval rain, increas-
ing differential movement always increases the density in
the MPA and always decreases the density in the fishing
grounds. From Eqs. 11 and 12, we can also solve for the
local effect

N�
M

N�
F
¼ lN þ lF þ 2bDM

lN þ 2DM

the regional abundance

N�
M þN�

F ¼ R 2lN þ lF þ 2DM 1þ bð Þ½ �
lN þ lF þ bDMð ÞlN þ lN þ lFÞDMð

and the fishing yield, which is equal to N�
F (Eq. 11) times

the mortality due to fishing (lF) and the size of the fishing
grounds (SF): that is, lFSFN�

F.

These solutions can be differentiated with respect to b, to
determine how the solutions change as differential move-
ment, b, increases

d N�
M

N�
F

� �
db

¼ 2DM

lN þ 2DM
[ 0 (15)

d N�
M þN�

F

� �
db

¼ RDMlFðlN þ 2DMÞ
lN þ lF þ bDMð ÞlN þ lN þ lFð ÞDM½ �2 [ 0

(16)

d lFSFN�
F

� �
db

¼ �lFSFRDMlN lN þ 2DMð Þ
lN þ lF þ bDMð ÞlN þ lN þ lFð ÞDM½ �2 \0

(17)

Thus, increasing differential movement always increases

the local effect (N
�
M

N�
F
; Eq. 15) and the regional abundance

(N�
M þN�

F; Eq. 16), but decreases fishing yield (lFSFN�
F;

Eq. 17; Fig. 2).
We then evaluated the effect of overall mobility on the

local effect, regional abundance, and fishing yield, for a
given level of differential movement (assuming b� 1: that is,
movement rate in the fishing grounds was always greater
than or equal to movement rate in the MPA). For a given
strength of differential movement, changing DM induces an
equivalent relative change in DF, so we use DM to indicate
the overall mobility. The effect of overall mobility on the
three measures of MPA efficacy is

d N�
M

N�
F

� �
dDM

¼ 2lN b� 1ð Þ � 2lF
lN þ 2DMð Þ2 (18)

d N�
MþN�

F

� �
dDM

¼ RlF b� 1ð ÞlN�lF½ �
lNþlFþbDMð ÞlNþ lNþlFð ÞDM½ �2 (19)

d lFSFN�
F

� �
dDM

¼ lFSFRlN 1�bð ÞlN þlF½ �
lNþlFþbDMð ÞlNþ lNþlFð ÞDM½ �2 (20)

Eqs. 18–20 demonstrate that the correlations between
mobility and the local effect (Eq. 18), regional abundance
(Eq. 19), and fishing yield (Eq. 20) depend on the strength of
differential movement (b). In the absence of differential move-
ment (b = 1), increasing mobility decreases the local effect

d
N�
M

N�
F

� �
dDM

\0

0
@

1
A and regional abundance

d N�
MþN�

Fð Þ
dDM

\0
� �

, but

increases fishing yield
d N�

Fð Þ
dDM

[ 0
� �

; see the relative loca-

tions of the three lines at b = 1 in Fig. 2 and the solid line in
Fig. 3. These results reiterate those of past theoretical stud-
ies (e.g., Gerber et al. 2003, Starr et al. 2004, Malvadkar
and Hastings 2008). However, in the presence of differential
movement (b > 1), the sign of these derivatives (Eqs. 18
and 20) depends on the relative mortality rates in the fishing
grounds (lN + lF) vs. the MPA (lN). When the differential
movement parameter is smaller than the relative mortality
rates (i.e., 1 < b < (lN + lF)/lN), the qualitative patterns are
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identical to the results when there is no differential move-
ment (i.e., when b = 1). When the differential movement
parameter is equal to the relative mortality rates in the two
patches (i.e., b ¼ lN þ lFð Þ=lN, represented by the blue line
in Fig. 2), the spatial patterns are independent of the overall
movement rate (note the crossing of the three lines in Fig. 2
and the horizontal dashed line in Fig. 3). However, when
the differential movement parameter exceeds the relative
mortality rates (i.e., b[ lN þ lFð Þ=lN), increasing mobility
increases the local effect, and increases regional abundance,
but decreases fishing yield (see the relative locations of the
three lines on the right of the blue line in Fig. 2 and the dot-
ted line in Fig. 3). Thus, if differential movement is suffi-
ciently strong (i.e., if the movement rates in the two habitats
are at least as dissimilar as their respective mortality rates),
it can explain the discrepancy between previous theoretical
results (which assumed equal movement rates) and the

empirical studies that either found no significant relation-
ship (Micheli et al. 2004, Lester et al. 2009) or a possible
positive relationship (Claudet et al. 2010), between the local
effect and mobility.

The stepping-stone model.—As differential movement
increased, the local effect also increased (Fig. 4 and
Appendix S1: Fig. S5). Although regional abundance
increased and fishing yield decreased, these responses were
negligible (Fig. 4 and Appendix S1: Fig. S5). Overall, these
qualitative results are consistent with our analyses of the
two-patch box model (Eqs. 15–17).
Increasing the relative MPA size led to a marked increase

in regional abundance and decrease in fishing yield (Fig. 4b,
c). However, the local effect showed a more complex pattern
with respect to relative MPA size. The local effect increased
more as differential movement increased when the MPAwas

FIG. 2. The effect of differential movement (b = DF/DM; where b is differential movement, DM is total emigration rate from each cell in
the MPA , and DF is emigration rate in the fishing ground) on (a) the local effect (density ratio of the MPA and fishing grounds), (b) regio-
nal abundance, and (c) fishing yield at equilibrium under three levels of mobility (DM = 0.1 [solid line], 0.5 [dashed], and 5 [dotted]) in the
two-patch box model for the open system (i.e., with larval rain). The blue line indicates the value of the differential movement parameter at
which the local effect shifts from decreasing to increasing with an increase in mobility (b = (lN + lF)/lN = 1.5; where lN is the natural mor-
tality rate and lF is the additional mortality in the fishing grounds). Other parameters: larval recruitment R = 2, lN = 0.5, lF = 0.25. All
results are rescaled relative to their values before establishing the MPA.

FIG. 3. The effect of mobility (DM) on (a) the local effect (density ratio of MPA and fishing grounds), (b) regional abundance, and (c)
fishing yield under three levels of differential movement (b = 1 [solid line], 1.5 [dashed], and 2 [dotted line]), corresponding to values smaller
than, equal to, and larger than (lN + lF)/lN, in the two-patch box model for the open system (i.e., with larval rain). Other parameters are
R = 2, lN = 0.5, lF = 0.25. All results are rescaled relative to their values before establishing the MPA.
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either relatively large or relatively small; the effect of increas-
ing differential movement was smallest at intermediate MPA
sizes (Fig. 4a). When differential movement was equal to
the critical value (i.e., b = (lN + lF)/lN), the local effect did
not change with the relative MPA size (see the dashed line in
Fig. 4a). However, when differential movement was smaller
than this value (1 ≤ b < (lN + lF)/lN: on the left side of
the dashed line in Fig. 4a), the local effect initially increased
(as the relative MPA size increased from 0 to 0.5), but then
decreased (as the relative MPA size increased from 0.5 to
1.0), although the small change is hard to discern in Fig. 4a.
In contrast, when differential movement was larger than
this critical value (b > (lN + lF)/lN), the local effect first
decreased then increased as the relative size of the MPA
increased.

The magnitude of differential movement determined the
relationship between mobility and the local effect: when
b < (lN + lF)/lN, the spillover pattern existed, leading to a
negative relationship between mobility and the local effect
(when Eq. 18 < 0; Fig. 5a); when b = (lN + lF)/lN, there
was a constant local effect (Eq. 18 = 0; Fig. 5b); and when
b > (lN + lF)/lN, the spill-in pattern occurred, leading to a
positive relationship between mobility and the local effect
(Fig. 5c). These qualitative effects on the local effect held
across MPA sizes (Fig. 5).
We also explored the spatial patterns that arose within a

habitat and across the MPA-fishing ground boundary to
gain insights about differential movement and its relation-
ship to past theoretical results. We simulated the density in
each cell across the entire study region under three levels of

FIG. 4. The effect of the relative MPA size (SM/(SM + SF); where SM is the size of the MPA and SF is the size of the fishing ground) and
the differential movement parameter (b) on (a) the local effect (density ratio of MPA and fishing grounds), (b) regional abundance, and (c)
fishing yield in the stepping-stone model for the open system (i.e., with larval rain). All results are rescaled relative to their values before
establishing the MPA. Shades of red color (values >1) indicate an increase relative to conditions before establishment of the MPA, whereas
blue indicates a decrease and white indicates no change (i.e., values equal to 1). The dashed line in panel a indicates the differential move-
ment parameter at which the local effect is independent of the relative size of the MPA (b = 1.5 = (lN + lF)/lN)). Other parameters: R = 2,
lN = 0.5, lF = 0.25, SM + SF = 10, and DM = 0.5.

FIG. 5. The effect of mobility on the local effect (density ratio of MPA and fishing grounds) for the stepping-stone model of the open
system (i.e., with larval rain) evaluated for three relative sizes of the MPA (SM/(SM + SF) = 0.1, 0.5, and 0.9) and three levels of differential
movement: (a) b = 1.0, (b) b = 1.5, and (c) b = 2.0, corresponding to values smaller than, equal to, and larger than (lN + lF)/lN. Note that
the solid and dotted lines in panels a and c overlap, as do all three lines in panel b. Other parameters: R = 2, lN = 0.5, lF = 0.25, and SM +
SF = 10. All results are rescaled relative to their values before establishing the MPA.
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differential movement: that is, when b was smaller
than, equal to, or larger than the relative mortality
rates lN þ lFð Þ=lN). When b = (lN + lF)/lN, densities
within each habitat were homogeneous: that is, there was no
spatial heterogeneity within the MPA or the fishing grounds,
but there was a sharp density difference at the boundary
between the MPA and fishing grounds (Fig. 6b). However,
when b 6¼ (lN + lF)/lN, densities were heterogeneous within
habitats, with density in a cell depending on the cell’s dis-
tance from the MPA boundary. Importantly, the density dif-
ference across the boundary of the MPA shifted from
smooth (when b < (lN + lF)/lN; Fig. 6a) to abrupt (when
b ≥ (lN + lF)/lN; Fig. 6b, c). Specifically, when differential
movement was small (Fig. 6a: b < (lN + lF)/lN), densities
in the fishing grounds were greatest near the MPA bound-
ary, but lowest in the center. In contrast, densities in the
MPAwere lowest at the boundary and greatest at the center.
These smooth transitions are consistent with the spillover
pattern classically described in models of MPA systems (see
Gerber et al. 2003, Starr et al. 2004, Malvadkar and Hast-
ings 2008). However, when differential movement was large
(Fig. 6c: b > (lN + lF)/lN), the pattern reversed. Densities
in the fishing grounds were depressed near the MPA border
and greatest at the center of the fishing grounds. Densities in
the MPA were greatest near the boundary and depressed in
the center of the MPA. These patterns are indicative of spill-
in dynamics. These qualitative patterns were observed across
all relative MPA sizes (see Appendix S1: Fig. S1).

The closed system (logistic growth without
larval redistribution)

The two-patch box model.—Changing the form of the recruit-
ment term from larval rain to logistic growth without larval
redistribution (Appendix S1: Eqs. S1–S6) had relatively little

effect on the qualitative responses regarding the local effect
and further highlighted the important role played by differen-
tial movement. For example, the relationship between mobility
and the local effect depended on the magnitude of differential
movement; however, the transition from a negative to a posi-
tive relationship occurred when b ¼ r�lN

r�lN�lF
instead of b =

lN þ lFð Þ=lN. In other words, when 1� b\ r�lN
r�lN�lF

, the typi-

cal spillover pattern occurred (Appendix S1: Eq. S19); and
when b[ r�lN

r�lN�lF
, the spill-in pattern occurred (Appendix S1:

Eq. S20): see Appendix S1: Fig. S4d).
This critical value of differential movement (b ¼ r�lN

r�lN�lF
;

in this case, b = 2) also defined the conditions under which
the regional abundance and fishing yield did not change with
increased mobility (Appendix S1: Fig. S4e, f). In comparison
with the open system, the qualitative pattern of change in
regional abundance was a bit more complex: with an increase
in b, the regional abundance decreased (compare the three
lines in Fig. S4e), whereas in the open system, the regional
abundance increased (Appendix S1: Fig. S4b). In addition,
the relationship between regional abundance and mobility
was not always monotonic: for example, when b < r�lN

r�lN�lF

(the solid black line in Appendix S1: Fig. S4e), regional abun-
dance first increased then decreased with the increase of
mobility (see also Appendix S1: Eq. S29 and associated text
in the Appendix S1). Patterns of change in fishing yield were
consistent with results from the open system.

The stepping-stone model.—Extension of the two-patch
model to the stepping-stone model further demonstrated the
role of differential movement and showed that spatial pat-
terns were not qualitatively affected by changing the recruit-
ment from constant larval rain to local recruitment (i.e.,
comparing the open vs. closed system). When differential
movement was small or absent (when b < r�lN

r�lN�lF
), densities

FIG. 6. Relative local densities (rescaled relative to their values before the MPA establishment) in the MPA (in blue and to the right of
the vertical line) and fishing grounds (in red and to the left of the vertical line) for the stepping-stone model of the open system (i.e., with
constant larval rain) under three levels of differential movement (b = 1.0, 1.5, and 2.0) when the MPA and fishing grounds are equal in size
(SM/(SM + SF) = 0.5: see Appendix S1: Fig. S1 for results when the MPA and fishing grounds are of different sizes). The three values for the
differential movement parameter correspond to values smaller than, equal to, and larger than (lN + lF)/lN. Note that for b = 1.0, the density
changes smoothly across space, but for b ≥ 1.5, the density changes abruptly across the MPA boundary. Also given on each panel is the local
effect (LE: the density ratio of the MPA and fishing grounds). Other parameters: R = 2, lN = 0.5, lF = 0.25, and SM + SF = 10.
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changed relatively smoothly within habitats and across the
MPA boundary (Appendix S1: Fig. S2a, d, g). However,
when b = r�lN

r�lN�lF
, densities within habitats were homoge-

neous, and the local effect was independent of the relative
MPA size (Appendix S1: Fig. S2b, e, h). When differential
movement was even larger (b > r�lN

r�lN�lF
), densities were

heterogeneous within habitats and changed abruptly across
the MPA boundary (Appendix S1: Fig. S2c, f, i). The regio-
nal abundance and fishing yield decreased with differential
movement, consistent with what we observed in the two-
patch box model (compare Appendix S1: Fig. S4e, f and the
middle and right-hand columns of Appendix S1: Fig. S6).

The semi-closed system (logistic growth with
larval redistribution)

The two-patch box model.—Analytic solutions to the model
for the semi-closed system (even with only two patches) were
more difficult to obtain than for the other two systems;
therefore, we focused exclusively on simulation. As seen with
the other two systems, the effect of mobility on the local
effect depended on the degree of differential movement.
There was a critical value of b that distinguished the local
effect increasing vs. decreasing with mobility (Appendix S1:
Fig. S4). Based on the parameter values used in our simula-
tions, this critical value occurred at ~1.2, which was less than
the critical value obtained analytically for the closed system
(i.e., r�lN

r�lN�lF
).

Fishing yield exhibited a similar pattern as in the open
system; for example, fishing yield decreased as differential
movement increased, and increasing mobility caused fishing
yield to increase when differential movement was greater
than the critical value but decrease when differential move-
ment was less than the critical value (Appendix S1:
Fig. S4i). Regional abundance showed a more complex pat-
tern with differential movement that was a composite of the
patterns observed for the open and the closed systems.
When differential movement was relatively small (smaller
than the critical value; see the solid and dashed lines in
Appendix S1: Fig. S4 h), regional abundance increased with
differential movement, as observed in the open system
(Appendix S1: Fig. S4b). When differential movement was
relatively large (see the dotted and the dash-dotted lines in
Appendix S1: Fig. S4 h), regional abundance decreased with
differential movement, as observed in the closed system
(Appendix S1: Fig. S4e).

The stepping-stone model.—The density pattern across the
whole study area resulting from differential movement
exhibited similar qualitative patterns as observed in the
closed and open systems (Appendix S1: Fig. S3): for exam-
ple, at the critical value of differential movement, there was
constant density within the MPA (or fishing grounds,
Appendix S1: Fig S3b, f, j), but above or below this critical
value, we observed spill-in (Appendix S1: Fig. S3a, e, i) or
spill-out (Appendix S1: Fig S3c, d, g, h, k, l), respectively.
Additional results for regional abundance and fishing yield
were more complex than for the open system and depended
on both relative MPA sizes and fishing mortalities
(Appendix S1: Fig. S7).

DISCUSSION

This study used both analytical and numerical methods to
determine how differential movement, overall mobility, and
relative size of the MPA altered the local effect (density ratio
of MPA and fishing ground), regional abundance, and fish-
ing yield of a population that is partially protected by a mar-
ine reserve. Our results show that the degree of differential
movement alters the local effect, regional abundance, fishing
yield, and spatial patterns within and across habitats. These
results were robust and qualitatively unaffected by altering
our assumptions about the scale of larval dispersal and den-
sity dependence. In all cases, there was a critical value of dif-
ferential movement that distinguished between spill-in and
spill-out patterns. When differential movement was smaller
than the critical value, we observed a spill-out pattern.
When differential movement was larger than the critical
value, we observed spill-in patterns.
Previous models (e.g., Gerber et al. 2003, Malvadkar and

Hastings 2008) assumed movement rates were homogeneous
across the landscape (i.e., b = 1), and therefore have gener-
ated a body of knowledge focused on spill-out phenomena.
For example, these classic models predict that the local effect
declines with increased mobility: that is, increased mixing
between the fishing grounds and MPA homogenizes the sys-
tem. In contrast, our results revealed that if organisms move
at sufficiently different rates inside vs. outside of MPAs,
increasing overall mobility can enhance the local effect (see
Figs. 2, 3, 5, and Appendix S1: Fig. S4). This means that
groups of species with similar movement patterns inside and
outside an MPA could show negative relationships between
mobility and the local effect, while taxa with more disparate
rates of movement in the two habitats could show no rela-
tionship, and taxa with even larger differences in their move-
ment rates could show a positive relationship between
mobility and the local effect. Because meta-analyses have
found either no average effect (Micheli et al. 2004, Lester
et al. 2009), or suggested a possible positive effect of mobil-
ity on the local effect (Claudet et al. 2010), we suggest that
differential movement should be considered as one possible
hypothesis to explain the discrepancy between empirical
data and previous theoretical investigations of mobility.
This conclusion contrasts with that of Langebrake et al.

(2012). Our study demonstrates that differential movement
can produce an abrupt change in density near the boundary
between the MPA and the fishing grounds (see Fig. 6 and
Appendix S1: Figs. S1–S3; see also Ovaskainen and Cornell
2003, Maciel and Lutscher 2013). This pattern suggests that
Langebrake et al.’s (2012) differential movement model, in
which they imposed continuity in a reaction-diffusion
model, may have provided a misleading evaluation of the
effects of differential movement on a population’s response
to protection.
The effect of differential movement on the local effect (as

well as regional abundance and fishing yield) is explicitly
linked to the local demographic rates (Fig. 5 and
Appendix S1: Fig. S4). The establishment of an MPA creates
a higher density of fish in the MPA relative to the fishing
ground due to reduced mortality in the MPA. Assuming
equal movement rates in the two habitats, this difference in
density provides a net movement from the MPA to the
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fishing ground (i.e., spillover), which tends to reduce the
density difference between the two habitats. At larger mobil-
ity rates, the density disparity is homogenized further and
the local effect declines. However, when differential move-
ment occurs, and is sufficiently large to counterbalance the
effect of differential recruitment and mortality inside vs. out-
side the MPA, it can swamp the effect of the density differ-
ence, giving rise to a spill-in pattern. Under this spill-in
pattern, increased mobility exacerbates the density differ-
ence between the habitats: that is, the density in the MPA
increases, the density in the fishing grounds decreases, and
the local effect increases. When the differential movement
just offsets the spillover potential (i.e., b equals the critical
value), there is no net movement between the MPA and the
fishing grounds. Thus, the density in each habitat is only
determined by habitat-specific demographic rates (e.g., see
Appendix S1: Eqs S11 and S12) and the local effect does not
depend on the relative size of the MPA or the organism’s
mobility: Figs. 2a, 3, 4a, 5b, and Appendix S1: S1–S4).
Theoretical models (Ovaskainen and Cornell 2003,

Langebrake et al. 2012, Maciel and Lutscher 2013, Brochier
et al. 2015) have demonstrated that a movement bias at the
MPA boundary toward the MPA can produce spatial pat-
terns similar to those seen in our model of differential move-
ment. Both behavioral processes (movement bias and
differential movement) can extend the relative residence time
of individuals in MPAs and further increase the local effect.
Biologically speaking, movement bias is thought to be an
adaptation to sharp patch edges, environmental gradients,
and/or highly dynamic landscapes (Fagan et al. 2017). It
requires that organisms be able to perceive and orient
toward different environmental conditions over spatial
scales relevant to the level of contrast of the environmental
gradients or to the sharpness of patch edges (Benhamou and
Bovet 1989, Nathan et al. 2008, Fagan et al. 2017). Many
animals bias their movement, but there is high variation in
their ability to do so or in the environmental gradient (or
grain) to which they can react (e.g., Ries and Debinski 2001,
Fagan et al. 2017).
In contrast, differential movement is advantageous for

foraging individuals in coarse-grained, highly heterogeneous
and patchy environments (Benhamou 1992). Differential
movement requires that individuals perceive local conditions
and modify their movement speed and/or sinuosity (e.g.,
turning angles) to intensify their use of space in profitable
(or safe) areas, and thus differential movement can be used
even if patch boundaries are non-perceptible (Benhamou
1992). Note that in the present study, where we used a one-
dimensional and discrete representation of space, the move-
ment rates between cells represent a higher scale conse-
quence of within-cell movements: as individuals modify
their movement speed and/or sinuosity within cells in
response to local conditions, this modifies the between-cell
movement rates. Both movement bias and differential move-
ment are very common in nature, and are likely to be driven
by differences in habitat quality (Gr€uss et al. 2011, Dixson
and Hay 2012) or by fishing activities (e.g., boat noise; see
Sar�a et al. 2007, Simpson et al. 2016), and probably both
play some role in MPA systems. This role will depend on the
extent of the environmental differences inside vs. outside the
MPA, the sharpness of the MPA edges, and on the fish’s

ability to perceive them, and should be empirically investi-
gated in the future.
To discriminate between the roles of differential movement

and movement bias, we should ideally compare movement
rates inside vs. outside of MPAs and patterns of movement at
the edges of MPAs. Unfortunately, we know of no relevant
field measurements in the context of MPA systems. Although
many studies have quantified movement in MPAs (Pittman
et al. 2014), none have compared movement rates in the MPA
with movement rates in the fishing grounds nor have any
quantified movement at the MPA boundaries (although the
data on home range size by Parsons et al. (2010) are support-
ive of the differential movement hypothesis; see also a terres-
trial example by Douglas-Hamilton et al. (2005), which
showed that elephants move more outside of protected areas).
Importantly, differential movement (or movement bias)

could lead to a local effect even in the absence of differential
mortality. If fishing mortality is absent, the local effect with
differential movement (in the box model for the open sys-

tem) becomes: N�
M

N�
F
¼ lNþ2bDM

lNþ2DM
. In the absence of differential

movement (b = 1), there is no difference in density between
the MPA and fishing grounds; however, for b > 1, a local
effect (with an abrupt change across the boundary) emerges
even without fishing-induced mortality (i.e., N�

M [N�
F;

inferred from N�
M

N�
F
¼ lNþ2bDM

lNþ2DM
and b > 1). Therefore, differen-

tial movement can inflate the local effect, potentially giving
a perception of a demographic benefit, when in fact, it pri-
marily reflects a behavioral response to human activities.
The field study by Eggleston and Parsons (2008) bears

directly on this point. They compared the change in density
of lobsters inside vs. outside of MPAs in the Florida Keys
over an intense, three-day, recreational fishing window. As a
result of the short duration of the study, there was no input
of lobsters to the system during the study, only extraction
and potential redistribution. As expected, lobster density
outside the MPAs declined. However, lobster density inside
the MPAs increased: there was a net movement of lobster
from the fishing grounds into the MPAs presumably because
they moved more in the fishing grounds and moved less in
the MPAs (e.g., due to differences in fishing-induced distur-
bance), and/or lobsters near the MPA boundary biased their
movement toward the MPA. As a result, the behavioral
response of the lobsters magnified the local effect that would
have been produced via differences in mortality alone.
We have emphasized the situation in which animal move-

ment is potentially greater in the fishing grounds (i.e., b > 1).
However, some species reduce their activity levels in the face
of additional risk (e.g., freezing behavior; Takahashi et al.
2005, Werner and Peacor 2003), and some species may
encounter greater densities of their predators in the MPA.
These types of non-consumptive effects (see Peacor 2002,
Preisser et al. 2009) from fishing activity could thus either
enhance (if b > 1) or reduce (if b < 1) the movement of ani-
mals between the fishing grounds and the MPA. Future
studies in marine conservation and fisheries management,
especially with respect to MPAs, should consider these direct
and indirect influences of fishing (i.e., differential mortality
as well as movement) on spatial patterns, population
dynamics, and sustainability (e.g., Walters and Juanes 1993,
Pine et al. 2009). Distinguishing effects of movement and

November 2018 MOVEMENT DETERMINES MPA EFFICACY 2493



demography is especially crucial because movement could
lead to misinterpretation about the efficacy of management
strategies and their effects on species conservation.
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SECTION 1:  THE STEPPING-

STONE MODEL FOR THE 

OPEN SYSTEM: THE 

EFFECTS OF MPA SIZE 

 

In the main text, we provide 

results for the stepping stone 

model for the open system 

(i.e.,with larval rain), when 

the MPA and fishing 

grounds are of equal size 

(SM/(SM+SF) = 0.5).  Here 

(Fig. S1), we also provide 

results when SM/(SM+SF) = 

0.1 and 0.9.  The qualitative 

patterns are the same across 

all three MPA sizes: for 

equal rates of movement in 

 
Fig. S1. Relative local densities in the MPA (in blue and to the 

right of the vertical line) and fishing grounds (in red and to the left) 

for the stepping stone model with larval rain under three levels of 

differential movement (β=1, 1.5 and 2) and three relative MPA 

sizes (i.e., SM/(SM+SF)= 0.1, 0.5 and 0.9). The three values for the 

differential movement parameter correspond to values smaller than, 

equal to, and larger than the relative mortality (i.e., (𝜇N+𝜇F)/𝜇N).  

For β =1, the density changes smoothly across space, but for β>1.5, 

the density changes abruptly across the MPA boundary. Also given 

on each panel is the local effect (LE: the density-ratio of the MPA 

and fishing grounds). Other parameters were: R=2, 𝜇N=0.5, 

𝜇F=0.25, and SM+SF =10. All densities are rescaled relative to their 

values before MPA establishment. 



 
 

2 

the two habitats (i.e., 𝛽 = 1), there is a gradient in density within each habitat (e.g., densities in 

the MPA are greatest near the border with the fishing ground) and densities change smoothly 

across the MPA-fishing ground border.  However, when the differential movement parameter 

equals the relative mortality rate (i.e., 𝛽 = (𝜇N + 𝜇F)/𝜇N, which in this case is 1.5), then 

densities are constant within each habitat and there is an abrupt transition across the border 

between the MPA and fishing grounds (Fig. S1, middle column).  Under more extreme values of 

different movement (i.e., 𝛽 > (𝜇N + 𝜇F)/𝜇N), there is again a density gradient within each habit 

although the pattern is opposite that is seen when 𝛽 = 1: e.g., the density in the MPA is greatest 

in the middle of the MPA and lowest in the middle of the fishing grounds (Fig. S1, right hand 

column).  
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SECTION 2:  CLOSED SYSTEM (LOGISTIC GROWTH WITHOUT LARVAL REDISTRIBUTION) 

 
2.1  The basic model 

Replacing constant larval rain (R in Eq. 1-6) with logistic growth without larval redistribution 

(i.e., with all larval produced locally are retained locally), the stepping-stone model becomes: 

d𝑁F,−SF

d𝑡
= 𝑟F𝑁F − 𝑟F

𝑁F
2

𝐾F
− (𝜇N + 𝜇F)𝑁F,−𝑆F

− 𝐷F𝑁F,−𝑆F
+

𝐷F

2
𝑁F,−𝑆F+1 +

𝐷M

2
𝑁M,𝑆M

 (S1) 

d𝑁F,𝑖

d𝑡
= 𝑟F𝑁F − 𝑟F

𝑁F
2

𝐾F
− (𝜇N + 𝜇F)𝑁F,𝑖 − 𝐷F𝑁F,𝑖 +

𝐷F

2
(𝑁F,𝑖−1 + 𝑁F,𝑖+1), where 𝑖 = −𝑆F +

1, … , −3, −2 (S2) 

d𝑁F,−1

d𝑡
= 𝑟F𝑁F − 𝑟F

𝑁F
2

𝐾F
− (𝜇N + 𝜇F)𝑁F,−1 − 𝐷F𝑁F,−1 +

𝐷F

2
𝑁F,−2 +

𝐷M

2
𝑁M,1 (S3) 

d𝑁M,1

d𝑡
= 𝑟M𝑁M − 𝑟M

𝑁M
2

𝐾M
− 𝜇N𝑁M,1 − 𝐷M𝑁M,1 +

𝐷M

2
𝑁M,2 +

𝐷F

2
𝑁F,−1 (S4) 

d𝑁M,𝑖

d𝑡
= 𝑟M𝑁M − 𝑟M

𝑁M
2

𝐾M
− 𝜇N𝑁M,𝑖 − 𝐷M𝑁M,𝑖 +

𝐷M

2
(𝑁M,𝑖−1 + 𝑁M,𝑖+1), where 𝑖 = 2, 3, … , 𝑆M − 1

 (S5) 

d𝑁M,SM

d𝑡
= 𝑟M𝑁M − 𝑟M

𝑁M
2

𝐾M
− 𝜇N𝑁M,𝑆M

− 𝐷M𝑁M,𝑆M
+

𝐷M

2
𝑁M,𝑆M−1 +

𝐷F

2
𝑁F,−𝑆F

 (S6) 

in which 𝑟F and 𝑟M are intrinsic growth rates (per capita larval production) in the fishing grounds 

and MPA, and 𝐾F and 𝐾M are carrying capacities for cells in the fishing grounds and MPA 

respectively. All the other parameters are as defined in the main text. Although we initially write 

the model more generally (with habitat specific rM, rF, KM and KF), we explore the simpler case 

in which rM=rF=r and KM=KF=K. 

 

2.2.  The two-patch box model for the closed system 

When the MPA and fishing ground each have only one cell: 
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d𝑁F

d𝑡
= 𝑟F𝑁F(1 −

𝑁F

𝐾F
) − (𝜇N + 𝜇F)𝑁F − 𝐷F𝑁F + 𝐷M𝑁M (S7) 

d𝑁M

d𝑡
= 𝑟M𝑁M(1 −

𝑁M

𝐾M
) − 𝜇N𝑁M − 𝐷M𝑁M + 𝐷F𝑁F (S8) 

By re-parameterizing Eq. S1 and S2, the box model becomes: 

d𝑁F

d𝑡
= 𝑟F

′𝑁F(1 −
𝑁F

𝐾F
′ ) − 𝐷F𝑁F + 𝐷M𝑁M (S9) 

d𝑁M

d𝑡
= 𝑟M

′ 𝑁M(1 −
𝑁M

𝐾M
′ ) − 𝐷M𝑁M + 𝐷F𝑁F (S10) 

where 𝑟F
′ = 𝑟F − 𝜇N − 𝜇F, 𝑟M

′ = 𝑟M − 𝜇N, 𝐾F
′ =

𝑟F−𝜇N−𝜇F

𝑟F
𝐾F, 𝐾M

′ =
𝑟M−𝜇N

𝑟M
𝐾M. By assuming 

growth rate and carrying capacity are the same between the MPA and the fishing ground (𝑟M =

𝑟F = 𝑟 and 𝐾M = 𝐾F = 𝐾), we have 
𝐾M

′

𝐾F
′ =

𝑟−𝜇N

𝑟−𝜇N−𝜇F
.   

By setting the differential mobility 𝛽 =
𝐷F

𝐷M
, and the local effect 𝜌 =

𝑁M
∗

𝑁F
∗ , we have the 

equilibrium solutions to Eq. S9 and S10: 

𝑁M
∗ = 𝐾M

′ (1 +
𝛽−𝜌

𝜌𝑟M
′ 𝐷M)   (S11) 

𝑁F
∗ = 𝐾F

′ (1 −
𝛽−𝜌

𝑟F
′ 𝐷M)    (S12) 

We find that 𝜌 satisfies the following equation 

𝐺 ≔  𝐷M(𝜌 − 𝛽) (
𝐾F

′

𝐾M
′ 𝑟F

′ 𝜌2 +
1

𝑟M
′ ) + (

𝐾F
′

𝐾M
′ 𝜌 − 1) 𝜌 = 0  (S13) 

A positive root of ρ of Eq. S13 corresponds to a positive equilibrium if and only if 𝜌 > 𝛽 −
𝑟F

′

𝐷M
 

holds. Since G is a cubic polynomial in 𝜌 and since 𝜌 = 0 implies G<0, it follows that Eq. S13 

admits a positive root. Evaluating G for 𝜌 = 𝛽 −
𝑟F

′

𝐷M
> 0, we find that 𝐺 = −

𝑟F
′

𝑟M
′ − 𝜌 < 0, 

therefore there always exists a positive root 𝜌, which satisfies 𝜌 > 𝛽 −
𝑟F

′

𝐷M
. Differentiating G by 

𝜌, we have: 
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∂𝐺

∂𝜌
=

𝐷M𝐾F
′

𝑟F
′𝐾M

′ 𝜌 (𝜌 − 𝛽 +
𝑟F

′

𝐷M
) +

𝐷M𝛽

𝑟M
′ 𝜌

+
𝐷M𝐾F

′

𝑟F
′𝐾M

′ 𝜌2   (S14) 

When 𝜌 > 0 and 𝜌 > 𝛽 −
𝑟F

′

𝐷M
, we have 

∂𝐺

∂𝜌
> 0. This implies that G=0 has a unique 

positive root 𝜌. Differentiating G by 𝛽 or 𝐷M, we have: 

∂𝐺

∂𝛽
= −𝐷M (

𝐾F
′

𝑟F
′𝐾M

′ 𝜌2 +
1

𝑟M
′ ) < 0   (S15) 

∂𝐺

∂𝐷M
= (𝜌 − 𝛽) (

𝐾F
′

𝑟F
′𝐾M

′ 𝜌2 +
1

𝑟M
′ ) . (S16) 

∂𝐺

∂𝐷M
  has the same sign as 𝜌 − 𝛽. If 𝜌 = 𝛽, 𝐺 = (

𝐾F
′

𝐾M
′ 𝜌 − 1) 𝜌, which has the same sign as 

(
𝐾F

′

𝐾M
′ 𝜌 − 1). If 𝜌 =

𝐾M
′

𝐾F
′ , 𝐺~ (

𝐾M
′

𝐾F
′ − 𝛽) that has the same sign as (1 −

𝐾F
′

𝐾M
′ 𝛽). Therefore, G always 

changes sign between 𝜌 = 𝛽 and 𝜌 =
𝐾M

′

𝐾F
′ , and the root is always located in the corresponding 

interval. Specifically, if 𝜌 >
𝐾M

′

𝐾F
′ , 𝜌 ∈ (

𝐾M
′

𝐾F
′ , 𝛽), and if 𝜌 <

𝐾M
′

𝐾F
′ , then 𝜌 ∈ (𝛽,

𝐾M
′

𝐾F
′ ). 

Using implicit differentiation, we have 

∂𝜌

∂𝛽
= −

𝜕𝐺

𝜕𝛽
𝜕𝐺

𝜕𝜌

> 0  (S17) 

and 
𝜕𝜌

𝜕𝐷M
= −

𝜕𝐺

𝜕𝐷M
𝜕𝐺

𝜕𝜌

 (S18) 

So 
𝜕𝜌

𝜕𝐷M
 has an opposite sign of 𝜌 − 𝛽, hence, 

𝜕𝜌

𝜕𝐷M
< 0 when 𝛽 <

𝐾M
′

K𝐹
′ =

𝑟−𝜇N

𝑟−𝜇N−𝜇F
  (S19) 

𝜕𝜌

𝜕𝐷M
> 0 when 𝛽 >

𝐾M
′

𝐾F
′ =

𝑟−𝜇N

𝑟−𝜇N−𝜇F
  (S20) 

𝜕𝜌

𝜕𝐷M
= 0 when 𝛽 =

𝐾M
′

𝐾F
′ =

𝑟−𝜇N

𝑟−𝜇N−𝜇F
  (S21) 

The limiting values of 𝜌 for low and high mobility are: 
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𝑙𝑖𝑚
𝐷M→0

𝜌 =
𝐾M

′

𝐾F
′  and 𝑙𝑖𝑚

𝐷M→∞
𝜌 = 𝛽  (S22) 

The limiting values of ρ for low and high differential movement 𝛽 are: 

𝑙𝑖𝑚
𝛽→0

𝜌 = 𝜌0 and 𝑙𝑖𝑚
𝛽→∞

𝜌 = ∞  (S23) 

where 𝜌0 in the case 𝐷M > 𝑟M
′  and 𝜌0 > 0 is the positive root of the quadratic form: 

𝐾F
′ 𝐷M

𝐾M
′ 𝑟F

′ 𝜌2 +
𝐾F

′

𝐾M
′ 𝜌 +

𝐷M

𝑟M
′ − 1 = 0 in the case 𝐷M > 𝑟M

′ . 

From S13, we have 

𝛽 = 𝜌 +
𝜌2𝐾F

′ −𝜌𝐾M
′

𝐾M
′ 𝐷M

𝑟M
′ +

𝐾F
′ 𝐷M

𝑟F
′ 𝜌2

    (S24) 

So, from S11 and S12, we have: 

𝑁M
∗ + 𝑁F

∗ = 𝐾F
′𝐾M

′ (𝑟M
′ 𝜌+𝑟𝐹

′ )(1+𝜌)

𝑟𝑀
′ 𝐾𝐹

′ 𝜌2+𝑟𝐹
′ 𝐾𝑀

′      (S25) 

Therefore, 

∂(𝑁M
∗ +𝑁F

∗)

∂𝜌
> 0 when 𝜌 < 𝜌∗ (equivalent to 

∂(𝑁M
∗ +𝑁F

∗)

∂𝛽
> 0 when 𝛽 < 𝛽∗ due to S17) (S26) 

and 
∂(𝑁M

∗ +𝑁F
∗)

∂𝜌
< 0 when 𝜌 > 𝜌∗  (equivalent to

∂(𝑁M
∗ +𝑁F

∗)

∂𝛽
< 0 when  𝛽 > 𝛽∗) (S27) 

where 𝜌∗ is the root of quadratic equation as follows: 

(𝑟M
′ + 𝑟F

′)𝑟F
′𝐾M

′ + 2𝑟M
′ 𝑟F

′(𝐾M
′ − 𝐾F

′)𝜌 − (𝑟M
′ + 𝑟F

′)𝑟M
′ 𝐾F

′𝜌2 = 0   (S28) 

When 𝜌 =
𝐾M

′

𝐾F
′ , 𝑁M

∗ + 𝑁F
∗ = 𝐾M

′ − 𝐾F
′ .  

Since 𝜌∗ <
𝐾M

′

𝐾F
′ , so max(𝑁M

∗ + 𝑁F
∗) > 𝐾M

′ − 𝐾F
′ . 

Using implicit differentiation, we have: 

∂(𝑁M
∗ +𝑁F

∗)

∂𝐷M
= −

∂(𝑁M
∗ +𝑁F

∗ )

∂𝜌

∂𝐷M
∂𝜌

   (S29) 
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Based on S22, S23 and S29, we know that when 𝛽 > 𝜌∗, 𝑁M
∗ + 𝑁F

∗ would monotonically change 

with 𝐷M, but when 𝛽 < 𝜌∗, 𝑁M
∗ + 𝑁F

∗ is unimodal with 𝐷M. 

While 𝑁F
∗ = 𝐾F

′ [1 −
𝐷M(𝛽−𝜌)

𝑟F
′ ] = 𝐾F

′ −
𝜌2𝐾F

′ −𝜌𝐾M
′

𝐾M
′ 𝑟F

′

𝐾F
′ 𝑟M

′ +𝜌2
,  (S30) 

So 
∂𝑁F

∗

∂𝛽
< 0.    (S31)  

 

2.3  The stepping stone model for the closed system 

We simulated densities across the entire study region (Fig. S2).  Spatial patterns of density are 

similar to those seen with the open system, except that the critical value for the differential 

mobility β in the closed system is determined by the value of 
𝐾M

′

𝐾F
′ =

𝑟−𝜇N

𝑟−𝜇N−𝜇F
 instead of 

(𝜇N+𝜇F)/𝜇N (see Eq. S19-S21). Here this critical value is β=2. 

 

 

  

 

Fig. S2. Relative local densities in 

the MPA (in blue and to the right of 

the vertical line) and fishing grounds 

(in red and to the left) for the 

stepping-stone model of the closed 

system across three levels of 

differential movement (β=1, 2 and 5) 

and three relative MPA sizes (SM/ 

(SM+SF) = 0.1, 0.5 and 0.9). The three 

values for the differential movement 

parameter correspond to values less 

than, equal to, and greater 

than 
𝑟−𝜇N

𝑟−𝜇N−𝜇F
.  Also given on each 

panel is the local effect (LE: the 

density-ratio of the MPA and fishing 

grounds). Other parameters were 

rM=rF=r=1, KM=KF=K=100, 𝜇N=0.5, 

𝜇F=0.25, and SM+SF=10. All densities 

were rescaled with respect to the 

density that existed prior to 

establishment of the MPA. Thus, 
values >1, indicate an increase in 

density in response to protection. 



 
 

8 

SECTION 3:  SEMI-CLOSED SYSTEM (LOGISTIC GROWTH WITH LARVAL REDISTRIBUTION) 

 
3.1  The basic model 

The previous two models represent ends of a spectrum.  At one extreme, in the open system 

(constant larval rain) the MPA-fishing ground system is small relative to the dispersal scale of 

larval, and as a result, adults in the MPA-fishing ground system have no effect on the supply of 

larvae to the study system. At the other extreme, in the closed system (logistic growth without 

larval redistribution), each cell is large relative to the scale of larval dispersal, and as a result, 

larvae produced by the local adults are retained locally (there is no larval dispersal).  Our third 

case is intermediate. We assume that the MPA-fishing ground system is closed (i.e., more closed 

than the open system) but that larvae produced in the system are well mixed (i.e., more open than 

the closed system). To model the semi-closed system, we assume that larvae settle uniformly 

across the system with the total input of larvae resulting from the summed reproduction across 

all cells.  Thus, we replace 𝑟i𝑁i in Eqs. S1-S6 by: 

1

𝑆M+𝑆F
(𝑟F ∑ 𝑁F,i

−1
𝑖=−𝑆F

+ 𝑟M ∑ 𝑁M,i
𝑆M
𝑖=1 )  (S32) 

 

3.2  The stepping stone model for the semi-closed system 

Solutions to the model for the semi-closed system (even with only two patches) are more 

complex than for the other two cases.  Therefore, we present only simulation results, and focus 

on the stepping-stone version of the model (SM+SF=10) here. The spatial patterns in density along 

the MPA-fishing ground system (Fig. S3) were similar to those obtained for the other two 

models in the absence of differential movement (β=1) and for large degrees of differential 

movement (β>2).  However, the critical value of β at which differential movement just offsets 

the spill-over potential was different from the other two models.  In the model for the open 
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system, the critical value occurred at  (𝜇N + 𝜇F)/𝜇N (i.e., 𝛽=1.5 for the case shown in Fig. S1), 

whereas in the model for the closed system, the critical value occurred at  𝛽 =
𝑟−𝜇N

𝑟−𝜇N−𝜇F
 (i.e., at 

𝛽=2 for the case that was simulated in Fig. S2).  Here, in the presence of larval redistribution 

(i.e., the semi-closed system), the critical value was even smaller.  Based upon simulation, we 

found this critical value to be ~1.2 (Fig. S3).  Thus, compared to the closed system, larval 

redistribution across the 

MPA and fishing grounds 

reduced the degree of 

differential movement 

required to transition from 

a gradual to an abrupt 

change in density across 

the MPA-fishing ground 

border.   

  

 
 
Fig. S3. Relative local densities in the MPA (in blue and the right of the 

vertical line) and fishing grounds (in red and to the left of the vertical 

line) for the stepping-stone model for the semi-closed system across 

four levels of differential movement (β=1, 1.2, 2 and 5) and three 

relative MPA sizes (SM/ (SM+SF) = 0.1, 0.5 and 0.9). The density 

changes abruptly near the boundary between MPAs and fishing ground 

when β=2 and 10. Also given on each panel is the local effect (LE: the 

density-ratio of the MPA and fishing grounds).  Other parameters were 

rM=rF=r=1, KM=KF=K=100, 𝜇N=0.5, 𝜇F=0.25, and SM+SF=10. All 

densities were rescaled with respect to the density that existed prior to 

establishment of the MPA.  Thus, values >1, indicate an increase in 

density in response to protection. 
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SECTION 4:  LOCAL EFFECT, REGIONAL ABUNDANCE, AND FISHING YIELD 

The above analyses emphasize the spatial pattern of densities and how it is modified by 

differential movement. Here we compare results for the three systems with respect to effects of 

mobility and fishing mortality on the local effect, regional abundance, and fishing yield.  

 

4.1  Effects of mobility 

As illustrated above, 

results from the three 

systems (open, closed, 

and semi-closed) yielded 

similar qualitative results 

as mobility increased in 

the two-patch box model 

(Fig. S4).  At the critical 

values of differential 

movement, β, all three 

indices (local effect, 

regional abundance, and 

fishing yield) were 

independent of mobility 

(see the horizontal 

dashed lines in Fig. S4). 

When β was smaller than 

the critical values, the spill-over pattern dominated: the local effect decreased but the fishing 

 
Fig. S4.  The effect of mobility on the local effect, regional abundance, 

and fishing yield, for the two-patch box model for three model systems 

given different degrees of differential movement.  All three responses 

exhibit no effect of mobility at a given level of differential movement 

(=1.5, 2, and 1.2 for the open, closed and semi-closed systems, 

respectively).  Other parameters were rM=rF=r=1, KM=KF=K=100, 

𝜇N=0.5and 𝜇F=0.25. All responses were rescaled with respect to their 

values achieved prior to establishment of the MPA.  Thus, values >1 

indicate an increase in response to protection.  The results in panel (a) 

are the same as shown in Fig. 3a.   
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yield increased with overall mobility.  When β was larger than the critical values, these trends 

were reversed.  

In the open system, regional abundance increased with differential mobility β and its 

relationship with overall mobility shifted from negative to positive as β increased above its 

critical value (Fig. S4b). However, the regional abundance in closed and semi-closed systems 

showed more complicated patterns due to effects of logistic growth (Fig 4e,h).  

 

4.2  Effects of fishing mortality 

A full analysis of the interplay between different movement, fishing mortality and MPA 

size is beyond the scope of this paper.  Here, we only show simulated results of the three indices 

under three levels of fishing mortalities and highlight several key results regarding the effect of 

differential movement (Fig. S5-S7): 

i) Increasing differential movement increased the local effect in all three models for 

all MPA sizes and all fishing mortalities. 

ii) Increasing differential movement tended to either decrease, or have minimal 

effect on, the regional abundance. 

iii) Increasing differential movement usually reduced fishing yield. 

The effect of differential movement on the local effect and on fishing yield is most easily 

understood by considering that differential movement drives individuals from the fishing 

grounds into the MPA. As a result, the local effect increases (because density in the MPA is 

increased relative to the fishing grounds) and fishing yield usually decreases as fish move at 

greater rates into the protected area.  Notice that the effect of increased differential movement on 

the local effect holds across all levels of MPA size and fishing mortality and the effect on fishing 
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yield holds across most of these levels (there is a slight increase in fishing yield with increased 

differential movement when fishing mortality is large and the MPA is small in the closed and 

semi-closed system: see Fig. S6 and S7).  Thus, beneficial effects of MPAs on fisheries are less 

likely when the target organism exhibits a greater degree of differential movement.   

  

 
 
Fig. S5.  The effect of differential movement on the local effect, regional abundance, and fishing 

yield, for the open system model under three different fishing mortality and variable MPA size.  

Other parameters were R=2, DM=0.5, 𝜇N=0.5, and SM+SF=10. All responses were rescaled with 

respect to their values achieved prior to establishment of the MPA.  
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Fig. S6.  The effect of differential movement on the local effect, regional abundance, and fishing yield, 

for the closed system model under three different fishing mortality and variable MPA size.  Other 

parameters were rM=rF=r=1, KM=KF=K=100, 𝜇N=0.5, 𝐷M=0.5, and SM+SF=10. All responses were 

rescaled with respect to their values achieved prior to establishment of the MPA. 
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Fig. S7.  The effect of differential movement on the local effect, regional abundance, and fishing 

yield, for semi-closed system model under three different fishing mortality and variable MPA 

size.  Other parameters were rM=rF=r=1, KM=KF=K=100, 𝜇N=0.5, 𝐷M=0.5, and SM+SF=10. All 

responses were rescaled with respect to their values achieved prior to establishment of the MPA. 
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