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ABSTRACT

A key issue in ecology is how patterns of species diversity differ as a function of scale. The
scaling function is the species–area curve. The form of the species–area curve results from
patterns of environmental heterogeneity and species dispersal, and may be system-specific.
A central concern is how, for a given set of species, the species–area curve varies with respect
to a third variable, such as latitude or productivity. Critical is whether the relationship is
scale-invariant (i.e. the species–area curves for different levels of the third variable are parallel),
rank-invariant (i.e. the curves are non-parallel, but non-crossing within the scales of interest)
or neither, in which case the qualitative relationship is scale-dependent. This recognition is
critical for the development and testing of theories explaining patterns of species richness
because different theories have mechanistic bases at different scales of action. Scale includes
four attributes: sample-unit, grain, focus and extent. Focus is newly defined here. Distinguishing
among these attributes is a key step in identifying the probable scale(s) at which ecological
processes determine patterns.

Keywords: combining data, productivity, scale, species–area curve, species diversity, species
richness.

INTRODUCTION

A key issue in ecology is how patterns of species diversity differ as a function of scale
(Brown, 1995; Rosenzweig, 1995; Gaston, 1996). For example, Waide et al. (1999) show that
the relationship between species richness and productivity changes depending on the spatial
scale over which these variables are measured. Such scale dependency can reveal the
operation of important processes that need to be incorporated into any general theory
explaining relationships involving species diversity (e.g. Palmer and White, 1994; Pastor
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et al., 1996). In this paper, we explore three issues necessary to examine patterns of species
richness and some potential controlling variable, using productivity as our exemplar. (1)
How do issues of scale arise as a consequence of the species–area relationship? (2) When
is the species–area relationship scale invariant with respect to a third variable? (3) What are
the components of scale and how do they affect our view of ecological processes?

SPECIES–AREA RELATIONSHIPS

If we wish to relate species richness (the number of species observed within a specified area)
to some environmental factor, especially if we are comparing or combining data from a
variety of sources, we need a function that standardizes estimates of species richness to a
common scale. This scaling function is a species–area curve. The species–area relationship is
a consequence of two independent phenomena. The total number of individuals increases
with area, leading to an increased probability of encountering more species with larger
areas, even in a uniform environment (Coleman et al., 1982; Palmer and White, 1994;
Rosenzweig, 1995). If this were the only factor affecting the rate of accumulating species,
and if the number of individuals sampled were large enough, then the species–area curve
would approach an asymptote at the total number of species in the species pool. The
asymptote requires that, at some spatial scale, species distributions are sufficiently mixed
and rare species are sufficiently abundant that all species will be encountered before the
entire space is sampled. Although for terrestrial systems, especially for plants, this curve is
plotted with respect to area, it could be plotted with regard to other measures of sampling
effort, such as number of net tows for zooplankton.

The second factor that affects the species–area relationship is environmental hetero-
geneity. As area increases, more types of environments are likely to be encountered. If
species are non-uniformly distributed with regard to environments, then the number of
species encountered will increase with area. In this instance, the species–area curve will
reach an asymptote only if the number of environments reaches an asymptote at some
spatial scale. Or, put another way, an asymptote requires that, at some scale, environmental
types are sufficiently mixed and abundant such that all types will be encountered before the
entire space is sampled.

The likelihood of both factors leading to asymptotic species–area curves depends on
the particular characteristics of the ecological system of interest and the way in which it is
sampled (e.g. nested quadrats vs dispersed quadrats). Species mixing in a uniform environ-
ment may occur within a single community. However, at biome to continental scales, such
mixing is less likely because biogeographic and evolutionary processes – such as speciation
events, large-scale movements due to climate change, dispersal barriers, and so on – con-
tinually lead to non-equilibrial distributions of species. With regard to environmental
heterogeneity, no general answer is possible because the distribution of habitats is system-
specific. For example, in the open water of a lake, heterogeneity is small and environmental
types are likely to be well-mixed throughout the entire lake (e.g. Dodson et al., in press).
Conversely, a mountainous area has a complex pattern of environmental heterogeneity as
a consequence of slope, aspect, elevation and soil type. A species–area curve for terrestrial
plants in this system may never attain an asymptote given the usual constraints of sampling.
Thus, issues of spatial scale must be resolved within the spatial context of each system
under consideration.
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SCALE AND INVARIANCE

Regardless of the shapes of species–area curves, they can provide a quantitative means
to compare different systems at a common sampling scale; for example, by comparing
species richness among systems at an adjusted area of 10 m2. In addition to providing
a standardized measure of species richness, species–area curves also reflect the way that
diversity is structured spatially and how environmental variables affect richness at different
spatial scales. If scale ‘matters’, then observed relationships between richness and environ-
mental factors, say productivity, will vary depending on the scale at which systems are
compared. We illustrate this with a simple graphic analysis.

Assume that, for each system (or data set), the relationship between the number of
species and area can be described by a function, and that this function may vary among
different systems (for our purposes, the form of these functions need not be specified in
detail). Furthermore, assume that these systems differ in some environmental parameter
of interest. Although we focus on productivity as the environmental parameter of interest,
the principles apply to any continuous factor. Our goals, then, are to compare how species
richness changes with productivity, and to determine whether and how this relationship
changes as a function of spatial scale (i.e. area sampled). This relationship is the sum of
abiotic responses of the species to the environmental factor and resulting changes in biotic
relationships.

Three general models may characterize the interrelationships among species richness,
area and productivity. In the simplest additive case, assume that the species–area relation-
ships are parallel. Each data set is defined by the same function, but the elevations of the
line differ (Fig. 1A). As a result, the relationship between species richness and productivity
will also be invariant to spatial scale, with the relationships between species richness and
productivity differing only by a constant. A plot of species richness versus productivity
will produce a single pattern at all spatial scales (Fig. 1D), and plots representing different
scales will produce parallel lines.

An alternative arises when the species–area curves are not parallel, but do not cross
within the range of observed values of productivity (Fig. 1B). Such a case might arise if
the environmental factor and area have multiplicative rather than additive effects on
species richness. When the species–productivity pattern is plotted for areas of different
size, it remains qualitatively the same, although the quantitative pattern varies (Fig. 1E).
Although we illustrate the problem in terms of differences in slope, any variation in the
shape of the species–area function results in a similar effect. Because most theories con-
cerning the relationship between productivity and diversity only make qualitative predic-
tions (Rosenzweig, 1995), tests of these theories are not affected by the interaction of area
and productivity. However, if one wishes to test theories that make quantitative predictions,
or if one wishes to use the pattern to design management plans, considerations of scale
(area) are critical, even when patterns are qualitatively the same.

The most interesting challenge arises when species–area curves intersect (Fig. 1C). In
this case, one might find one relationship between species richness and productivity when
measured at one scale and the opposite relationship when measured at a different scale
(Fig. 1F). Now the scale of measurement is critical, and no single relationship represents a
privileged perspective of the pattern.

The difference between the situation portrayed in Fig. 1B and that in Fig. 1C is one
of scale of interest, as the former is equivalent to the right-hand portion of the latter. If
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non-parallel curves exist, then crossing is more likely to occur over greater ecological scales
such as across community types. Mittelbach et al. (submitted) found that non-monotonic
relationships (hump-shaped and U-shaped) are somewhat more common across rather than
within community types.

Recognizing such scale-dependencies is important, because it may reveal mechanisms
that cause pattern. Thus, it is critical to know whether the curves are scale-invariant
(parallel), rank-invariant (non-crossing) or neither. We do not know whether scale invari-
ance is rare or common in nature (but see Lyons and Willig, 1999; Dodson et al.,
in press). Determining when and where relationships are scale-invariant is a critical
and ongoing endeavour (Westoby, 1993; Pickett et al., 1994; Pastor et al., 1996; Rapson
et al., 1997).

To demonstrate scale invariance in species–area relationships, we used two sets of
data: (1) six old-fields at the Kellogg Biological Station (KBS) LTER site in Michigan, USA

Fig. 1. The effects of invariance of the species–area function on the relationship of productivity
and diversity. Parts (A), (B) and (C) illustrate species–area curves for four sites (1–4) that differ in
productivity. Scale is not indicated, as any monotonic function would show the same effects. Parts (D),
(E) and (F) illustrate the relationship between productivity and number of species across the four sites
when sampling at a small and large grain size. In (A) and (D) the relationship is scale-invariant; in (B)
and (E) the relationship is rank-invariant; in (C) and (F) the relationship is neither scale- nor rank-
invariant. The scales on both axes are arbitrary; the y-intercept does not represent an area of zero.
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(K. Gross, unpublished data) and (2) 18 tallgrass prairie watersheds at the Konza LTER site
(http://climate.konza.ksu.edu/toc.html) in Kansas, USA. Each data set consisted of surveys
of species of vascular plant. The KBS data were collected in each field using a transect
(20 × 0.5 m) divided into 0.5 m2 quadrats. The Konza data were collected in each of 18
watersheds using a set of twenty 10 m2 quadrats.

Species–area curves for each field or watershed were derived empirically (Fig. 2). We
illustrate this procedure using a single watershed from the Konza data. Species richness per
10 m2 was calculated as the mean richness of the 20 quadrats for a watershed. For species
richness at 20 m2, we first compiled all possible pairwise combinations of quadrats. For each
pair, the total number of species was determined. Then, species richness was calculated as
the mean number of species for all pairs. For the richness at 30 m2, this procedure was
repeated using all three-way combinations. This procedure then was repeated and species
numbers were determined up to 200 m2 (i.e. all 20 quadrats). The resulting species–area
curve was not fit to any mathematical function.

Fig. 2. Estimated species–area curves based on species richnesses calculated from all possible com-
binations of quadrats. Within each set, the rank-orders of the sample areas do not differ statistically
based on the Kendall coefficient of concordance and are rank-invariant within sampling error. (A)
Six old-fields in southern Michigan at the KBS LTER site, each consisting of a belt transect (20 ×
0.5 m) divided into 0.5 m2 quadrats. (B) Eighteen tallgrass prairie watersheds in Kansas at the Konza
LTER site, each consisting of twenty 10 m2 quadrats arranged in five transects.
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To evaluate rank invariance, we calculated the Kendall coefficient of concordance (W),
a measure of multivariate rank correlation, using the mean densities determined at each size
(Zar, 1996). We asked whether among watersheds the rank-order of species richnesses
deviated from that expected from a random model. That is, were the rankings of richness at
each scale (e.g. 10 m2 and 20 m2) more similar to one another than expected by chance. This
test is the most direct and most powerful way to examine rank invariance.

Within both KBS and Konza, samples were highly correlated (W = 0.838 and W = 0.934,
respectively). Tests for whether these correlations differ from 1 (see Appendix) failed
to reject the null hypotheses (KBS: F19,19 = 1.193, P = 0.67; Konza: F19,19 = 1.071, P = 0.79).
A failure to reject the null hypothesis is equivalent to concluding that deviations from a
correlation of 1 are the result of sampling error. Our conclusion that any variation was the
effect of sampling is bolstered by the pattern of rank-order changes (Fig. 2). Almost all
changes in rank order occurred among single, pair and triplet samples for both data sets.
Although these switches could indicate changes in processes at fine scales, they are more
likely the result of sampling effects because they are almost entirely concentrated at the
smallest scales.

More work on small-scale sampling effects is needed to confirm this conjecture. For
example, additional sampling could be done using even smaller quadrats. If the region
of rank-switching shifted to smaller sizes, sampling effects would be implicated. Also, the
density of individuals, especially of rare species, could be determined. Rare species, with
only one or a few individuals in a plot, will make a large contribution to sampling error at
these scales (Collins and Glenn, 1991).

Thus, at these scales for these two graminoid-dominated systems, the species–area
relationship appears to be at least rank-invariant (non-crossing) given empirical sampling
error. An alternative test of scale invariance consists of calculating the species–area curve
for each sample and comparing the coefficients of those curves. Because the coefficents of
such curves would be estimated with error, the power of any such test would be low.
However, because many tests of ecological theories concern qualitative predictions, rather
than quantitative ones, a test of rank invariance is often sufficient. Rapson et al. (1997) also
found rank invariance in temperate herbaceous communities, although no formal statistical
analysis was done. In contrast, Pastor et al. (1996) found evidence of crossing species–area
curves for a series of graminoid-dominated wet meadows resulting in a change in the
productivity–richness relationship with scale (their fig. 3). Clearly, more empirical work is
needed to answer the question of how often species–area curves are scale- or rank-invariant.

THE COMPONENTS OF SCALE

Any discussion of scale effects must rely on definitions. Although we have no desire to
introduce more ecological terminology, in interpreting patterns of species richness one
must consider four attributes of scale: sample-unit, grain, focus and extent. Two of these
attributes (grain and extent) are in common usage. Sample-unit is an obvious extension of
current usage. It is the notion of focus that is new.

Sample-unit refers to the spatial and temporal dimensions of the collection unit (e.g. a 1
m2 quadrat sampled at the end of the growing season). Grain is the standardized unit to
which all data are adjusted via interpolation or extrapolation techniques, if necessary,
before analysis. This aspect of scale becomes particularly important in macroecological
research when data are obtained from different studies or by different researchers using
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sample units of unequal size. For example, eight fields may have measures of species rich-
ness derived from 1 m2 quadrats, whereas one field may have measures of species richness
derived from 2 m2 quadrats. To use data from all nine fields, a standard quadrat size must be
selected, which becomes the grain of the study. In theory, the grain could be of any area, but
would probably equal the size of the most common sample unit in the entire study (in the
earlier example, 1 m2). A number of algorithms can be used to adjust measures of species
richness or productivity in quadrats of 2 m2 to that in quadrats of 1 m2. Some environ-
mental characteristics, such as production, may have a simple allometric relationship to
area (intercept of 0, slope of 1); the production of a 2 m2 area is twice that of a 1 m2 area.
Other characteristics, such as species richness, have a more complex relationship because the
richness of a larger area is not in general the simple sum of the richnesses of the constituent
smaller areas unless turnover (β diversity) among sampling units is complete. A number of
functions (e.g. linear, power, exponential, logistic) could be used to extrapolate from the
species richness in a 2 m2 quadrat to that in a 1 m2 quadrat.

Focus is the scale at which the grains are aggregated and is equal to or larger than the
grain size. For example, when measures of species richness and productivity from each
1 m2 quadrat are used in the analysis of the relationship between species richness and
productivity, the focus is 1 m2. In contrast, if data on species richness and productivity
are averaged separately for each field, and then the analysis is conducted on those mean
values, the focus is a field. Finally, the extent of the study is the geographic area of the
samples, the time span of the samples, the biological domain of the samples, or the range of
values for the independent variable. In the first two cases the extent is spatially or temporally
defined, whereas in the last two cases the extent is defined biologically or ecologically.

Consider a hypothetical example (Figs 3 and 4) in which the species composition and
productivity of vascular plants were sampled from ten 1 m2 quadrats, randomly dispersed

Fig. 3. Diagram of a region illustrating the concepts of sampling-unit, grain, focus and extent. The
entire figure represents a region. In this region, there are three landscapes, with three communities
in each landscape, five fields in each community and ten quadrats sampled in each field.
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in a set of fields. Thus, the sample-unit is 1 m2. Five fields were used to characterize each
community, and three communities were used to sample each of three landscapes. Within
the context of such a hierarchical design, one can assess the relationship between species
richness and productivity with respect to four foci (quadrats, fields, communities or land-
scapes). If all of the data are used, then the extent is the entire region. If quadrats are the
focus, then the grain is 1 m2. Any relationship studied would be based on species richness
per 1 m2. In contrast, if the field is the focus of study, then one could characterize each field
either by the total number of species in all 10 quadrats or by the average number of species
per quadrat. In the former case, the grain is 10 m2, and in the latter case, the grain is 1 m2.
In both cases, the extent remains the same, the entire region. If community is the focus, then
the grain could be 1 m2 (average species richness per 50 quadrats), 10 m2 (average species
richness per three fields) or 50 m2 (total number of species in all 50 quadrats). Finally, if
landscape is the focus of study, then patterns of species richness could be examined at four
different grain sizes: 1 m2 (average species richness per 150 quadrats), 10 m2 (average species
richness per 15 fields), 50 m2 (average species richness per three communities) or 150 m2

(total number of species in all 150 quadrats).

Fig. 4. An illustration of how changing focus and extent alters the relationship between species
richness and productivity. In all cases, the sample-unit remains the quadrat and the grain remains the
field. Species richness is measured as the total number of species in each field, a grain of 10 m2. (A)
The focus is the field, the extent is the entire region and the slope is zero. (B) The focus is the field,
the extent is the landscape and the slopes are negative. (C) The focus is the community, the extent is
the landscape and the slopes are negative. (D) The focus is the landscape, the extent is the entire
region and the slope is positive.
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Importantly, the relationship between species richness and productivity can differ
appreciably, depending on the grain, extent and focus. In our example, analyses set at dif-
ferent combinations of focus and extent result in non-significant, negative linear or positive
linear relationships (Fig. 4). Within the statistical literature, this effect is known as
Simpson’s paradox (Simpson, 1951). Thus, the existence of a relationship and the form
of the relationship can be scale-dependent. Moreover, empirical evidence documents scale-
dependence. For example, the relationship between productivity and diversity was examined
for vegetation among landscapes across Iberia (Rey Benayas and Scheiner, submitted). The
data were analysed both averaging among sites within a landscape (local species richness;
grain = site) and summing across sites (total species richness; grain = landscape). In both
cases, the focus was the landscape. The patterns differed at the two grains and were due to
different processes; for example, spatial heterogeneity affected total species richness but not
local species richness. Thus, the distinction between grain and focus is important if we are to
identify the scale(s) at which patterns emerge together with the ecological processes that
affect them.

Recognizing the potential for scale-dependent patterns helps guide the search for causal
processes by providing insight into how processes operate to affect environmental charac-
teristics. Waide et al. (1999) demonstrate that the relationship between species richness
and productivity is often unimodal when the data span a number of communities (i.e.
between-community types). Consider two ways of generating a unimodal pattern when the
extent spans a number of local communities (Fig. 5). The between-community pattern
might be a simple sum of local-scale patterns (Fig. 5A), suggesting that there is a general
functional relationship between diversity and productivity that applies at both local and
regional scales. Alternatively, patterns at the local scale might differ from those at the
regional scale (Fig. 5B). In this case, a change in focus results in a change in pattern. This
disparity would strongly suggest that processes relating species richness to productivity
operate differently at different scales. In this case, more than one function must be used to
describe the relationship between local diversity and productivity, and the regional pattern
is not clearly derived from these local functions. The former case (Fig. 5A), however, would
suggest that either the same processes are operating at both scales or that all processes are
acting locally. We refer to this latter effect as the pattern accumulation hypothesis because
the between-community pattern is a simple accumulation of local effects and patterns (see
Guo and Berry, 1998).

GRAIN VERSUS FOCUS

We distinguish two attributes of scale, grain and focus, that at first do not seem distinctive.
However, only by recognizing these two attributes will we be able to properly infer the scale
at which processes are operating. Consider again the earlier example (Fig. 3) and three
combinations of grain and focus: (1) individual quadrats as the unit of analysis so that the
quadrat is both the grain and the focus; (2) field as the unit of analysis while averaging the
number of species per quadrat so that the quadrat is the grain and the field is the focus; and
(3) field as the unit of analysis while summing the number of species across quadrats so that
the field is both the grain and the focus.

When comparisons are made across fields, the pattern found in the three instances will be
identical if and only if a single transformation can simultaneously make all species–area
curves linear. This is a more general form of the scale invariance described earlier. If this



Scheiner et al.800

condition does not hold, the three instances may yield different patterns, depending on
details of the data.

But why is it necessary to define a new concept, focus? In the above example, two of the
instances have the same grain, but a different focus, while two have the same focus but a
different grain. A failure to recognize these distinctions can result in a failure to discriminate
between the relative importance of mechanisms that operate at different scales. Moving
from pattern to process is one of the grand challenges facing ecology today (Brown, 1999;
Lawton, 1999). We currently do not have a simple formula for deducing process from
pattern. Yet, the development and testing of theories explaining patterns of species richness
is likely to benefit from understanding the link between scale and pattern because different
theories have a mechanistic basis at different scales of action.

We emphasize that changing the focus is not the equivalent of investigating the contri-
bution of turnover to total species richness, β diversity. Changing the focus of a study

Fig. 5. The relationship between species richness and productivity for a region. Solid-line segments
indicate the relationships within various landscapes, whereas the dotted line shows the regional pat-
tern. (A) The regional pattern is a simple sum of the local patterns, suggesting that local-scale
processes are responsible for regional-scale patterns, the pattern accumulation hypothesis. (B) The
regional-scale pattern differs from the local-scale patterns, suggesting that processes act differently at
the two scales.
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is changing the inference space to which the question applies. The shape of the species–area
relationship is determined by the interaction of local (α) diversity, β diversity and spatial
autocorrelations in species distributions. However, there is ambiguity in how α and β

diversity are measured. There are no standard scales and methods for their measure-
ment or calculation. We suggest that dealing directly with the species–area relationship,
and the parameters of its functional estimate, avoid such problems because scale is always
explicit.

Exploring patterns of species diversity in different ecological systems and taxa will
generally require combining data collected from many sources. The collection of data will
never be the same everywhere. Therefore, it is important to develop a conceptual framework
for standardizing or guiding the analysis of data.
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APPENDIX

A test for rank invariance requires testing the null hypothesis that the coefficient of concordance is
equal to 1 (H0: W0 = 1). This coefficient is distributed as a χ2-statistic [χ2 = M(n − 1)W, where M is the
number of variables being correlated and n is the number of items within each variable] with
d.f. = n − 1 (Zar, 1996). An F-statistic is a ratio of two χ2-statistics. One can then test the following
hypothesis using an F-statistic: F = χ2

0/χ
2
t (d.f. = n0 − 1, nt − 1), where χ2

0 is the χ2 expected under the
null hypothesis and χ2

t is the observed χ2. Substitution gives a test statistic of F = 1/W, where W is the
observed correlation.


